Что такое термодинамика? Основы термодинамики основные понятия и определения.

Введение

Дисциплины техническая термодинамика и теория тепло - и массообмена формируют теоретическую базу для освоения дисциплин специального цикла по направлениям "Энергомашиностроение" и "Теплоэнергетика".

В первой части рассматриваются основные понятия термодинамики, приложение первого закона термодинамики к закрытым, открытым термодинамическим системам и системам с переменной массой. Изучаются равновесные состояния и квазиравновесные процессы в макроскопических системах. Значительное внимание уделяется второму закону термодинамики и его применению к необратимым процессам, вскрываются причины необратимости и ее влияние на потерю работоспособности (эксергии) системы. Подробно рассматриваются газовые циклы и реактивные двигатели. Уделяется внимание условиям равновесия в однородной и двухфазной системах, фазовым переходам при плоской и искривленной границах раздела фаз. Приводятся основные положения теории образования новой фазы. Рассматриваются свойства реальных газов и паров, вопросы дросселирования реальных газов и паров, процессы, протекающие в паре и влажном воздухе. Представлен достаточно подробный материал по паровым и комбинированным циклам теплоэнергетических установок, рассматриваются способы повышения их эффективности, проведен анализ циклов паротурбинной и газотурбинной установок с учетом необратимых потерь с помощью энтропийного и эксергетического методов. Вопросы непосредственного преобразования теплоты в электрическую энергию изложены в конспективной форме на основе упрощенных тепловых схем без рассмотрения состояния плазмы и процессов в ней. Даются основы термоэлектрического генератора. Рассматриваются идеальные циклы холодильных машин, тепловых насосов и методы ожижения газов. В разделе "Основы химической термодинамики" излагаются законы и положения, касающиеся процессов превращения одних веществ в другие. Даны основные понятия неравновесной термодинамики. В приложении Iприводятся программы расчета на ЭВМ газотурбинной установки с регенерацией теплоты и паротурбинной установки с оптимизацией параметров рабочего тела на примере геотермальной тепловой электрической станции. Приводится список литературы для более подробного изучения законов, методов и истории развития термодинамики.

Вторая часть курса содержит основные законы и положения теории тепло- и массообмена в природе и включает такие разделы как стационарная и нестационарная теплопроводность, конвективный теплообмен в однородных средах, теплоотдача при изменении агрегатного состояния вещества, массоперенос в двухкомпонентных средах, лучистый теплообмен, основы расчета теплообменных аппаратов рекуперативного типа.

Основные явления тепло- и массопереноса, имеющие место в природе, рассмотрены достаточно подробно на основе упрощенных физических моделей с получением расчетных формул. Такой академический подход, на наш взгляд, способствует развитию у студента творческого мышления: он видит, как создается физическая модель, как она упрощается путем введения обоснованных допущений для получения аналитического решения.

Так как в настоящее время трудно представить решение научных и инженерных задач без использования ЭВМ, то в разделе "Численные методы решения задач теплопроводности" показывается, как создаются уравнения в конечно-разностной форме для различных “узлов“ изучаемого тела. Рассматриваются вопросы устойчивости разностных схем. В приложении IIприводятся программы расчета двумерного температурного поля итерационным и матричным методами, а также текст программы расчета теплообменного аппарата для выполнения курсовой работы по методике .

Список литературы, приведенный в конце лекций, позволяет студенту более глубоко изучить интересующие его вопросы, которые в ряде случаев изложены в конспективной форме.

Часть I. Техническая термодинамика

1. Основные понятия термодинамики

Термодинамика - это наука, изучающая законы превращения энергии в различных процессах, сопровождающихся тепловыми эффектами. Термодинамика - дедуктивная наука: она базируется на основных законах природы (первом и втором началах термодинамики) и носит феноменологический характер, привлекая для своих исследований опытные данные.

Краткий исторический очерк развития термодинамики

Термодинамика как наука возникла в начале XIXвека. Основные задачи, которые она должна была решать - это установление количественной связи между теплотой и работой и повышение тепловой эффективности паровых машин, которые стали широко использоваться в промышленности. В 1824 году французский инженер Сади Карно опубликовал трактат “ Размышления о движущей силе огня и машинах, способных развивать эту силу“11. В этом научном труде он впервые доказывает, что “движущая сила огня“ (работа) зависит от величины температуры “горячего” и “холодного “ источников теплоты, и что более эффективными являются паровые машины высокого давления, в которых по его словам “...большее падение “теплорода” (под теплородом понимали все проникающее вещество)”. Еще тогда он пишет о причинах потери движущей силы: “...от бесполезного восстановления равновесия теплорода “. Таким образом, в работе Карно были заложены основные положения первого и второго законов термодинамики.

В 1842 году Роберт Майер устанавливает связь между теплотой и работой, определив механический эквивалент теплоты Джемс Джоуль в 1843 году, проведя уникальный эксперимент, находит тепловой эквивалент работывеличина которого до настоящего времени остается практически неизменной. Работы Майера и Джоуля устанавливают частный случай первого начала термодинамики - закона отражающего количественную сторону сохранения и превращения энергии.

Рудольф Клаузиус в 1854 году, рассматривая обратимый круговой процесс, вводит в термодинамику новую функцию состояния - энтропию S и тем самым устанавливает второй закон термодинамики для обратимых процессовПозднее Макс Планк в своей докторской диссертации показывает, что энтропия может быть использована при анализе необратимых процессов (с чем был не согласен Роберт Кирхгоф)14. В общем случае второе начало имеет види характеризует качественную сторону в процессах превращения энергии.

Виллиам Томсон (лорд Кельвин) вводит понятие абсолютной (термодинамической) температуры, которая является термодинамическим потенциалом.

Джозайя Виллард Гиббс создает новый метод термодинамических исследований - метод термодинамических потенциалов, устанавливает условия термодинамического равновесия. Развивает теорию фазовых переходов (правило фаз Гиббса).

В 1906 году Вальтер Герман Нернст (1864-1941) на основании опытных данных открывает третий закон термодинамики (теорема Нернста). Согласно этой теореме при температурах, стремящихся к абсолютному нулю, равновесные изотермические процессы протекают без изменения энтропии, то есть . В этом случае энтропия перестает быть функцией состояния и стремится к некоторой постоянной величине, не зависящей от параметров состояния.

В работах Д.И.Менделеева впервые используется “критическая температура”, при которой коэффициент поверхностного натяжения равен нулю.

В.А. Михельсон и Б.Б. Голицын внесли значительный вклад в термодинамику излучения.

Большой вклад в развитие термодинамики внесли также русские ученые: Д.П. Коновалов и Н.С. Курнаков (термодинамические методоы в физической химии), Н.Н. Боголюбов и М.А. Леонтович (статистическая термодинамика, неравновесные состояния), Л.Д. Ландау (теория сверхтекучести), В.К. Семенченко (термодинамическая теория растворов).

Термодинамическая система

Под термодинамической системой понимают совокупность макротел, находящихся между собой и окружающей средой в тепловом и механическом взаимодействии. Термодинамическая система (ТС) может быть закрытой (с подвижной или неподвижной границами) и открытой, когда через нее проходит поток массы. Если ТС не обменивается теплотой с окружающей средой, то такая система называется адиабатической. ТС может быть гомогенной и гетерогенной. В гомогенной системе свойства вещества остаются неизменными во всех точках или плавно изменяются, например, в поле гравитационных или иных массовых сил. Если ТС состоит из подсистем с различными физическими свойствами, то такая система называется гетерогенной. В этом случае считают, что физические свойства на границе подсистем изменяются скачком. В действительности изменение свойств происходит на длине свободного пробега молекулы.

Термодинамический метод исследования

Термодинамика рассматривает системы, состоящие из большого, но конечного числа частиц, она не изучает процессы на молекулярном уровне и оперирует макровеличинами - термодинамическими параметрами.

Термодинамический процесс

Совокупность последовательных состояний, проходящих термодинамической системой, называется термодинамическим процессом. Если ТС проходит практически равновесные состояния, то такой процесс называется квазистатическим. В пределе, когда процесс протекает бесконечно медленно, то имеем равновесный или обратимый процесс. Вообще под обратимым понимают такой процесс, когда при совершении прямого и обратного процесса ТС приходит в исходное состояние, а в окружающей среде не происходит ни каких изменений. В диаграммах состояния можно изобразить только квазистатические или равновесные процессы. Под квазистатическим процессом понимают такой процесс, когда скорость процесса намного меньше скорости релаксации

где a - любой термодинамический параметр (p , T , v ) ; - время; - время релаксации - время, за которое во всех точках ТС установится термодинамическое равновесие, то есть будем иметь одинаковые физические свойства (для газовсекунд).

Параметры термодинамической системы

Это макровеличины, характеризующие физическое состояние термодинамической системы. К ним относятся температураT , давление -p , объем -V (термические параметры).

Температура является одним из основных термических параметров. Температура есть мера нагретости тела. Температура тела, измеренная термометром, называется эмпирической (t ). К понятию абсолютной температуры (T ) приводит кинетическая теория газов. Между средней кинетической энергией поступательного движения молекул и температурой существует связь

(1.2)

где m - масса молекулы;
- средняя скорость поступательного движения молекул;k = 1,38 10 - 23 - постоянная Больцмана (универсальная газовая постоянная на одну молекулу газа) ;R 0 = 8314- универсальная газовая постоянная;N 0 = 6,022810 26 - число Авогадро (число молекул в одном киломоле). Из (1.2) следует, чтоT является статистической величиной, характеризующей состояние большого числа молекул. Между абсолютной и эмпирической температурой, измеренной в градусах Цельсия, существует зависимость

(1.3)

Давление , как и температура, - статистическая величина. Из курса молекулярной физики известно, что давление газа на стенки сосуда можно рассчитать по формуле

H/м 2 (1.4)

где n =N 0 /V  - число молекул, заключенных в объеме одного киломоля;

V  = 22,4 м 3 / кмоль - объем одного киломоля при нормальных условиях ( p н = 760 мм. рт. ст. = 1,01310 5 Па,t н = 0 С) ;- коэффициент сжимаемости.

С учетом (1.2) перепишем (1.4) в виде

. (1.5)

Для идеального газа, молекулы которого представляются в виде материальных точек, имеющих массу и не имеющих объема, а взаимодействие осуществляется только за счет упругих соударений (= 1), можно написать

pV =R 0 T . (1.6)

Выражение (1.6) является термическим уравнением состояния идеального газа для одного киломоля. Для М киломолей

pV = MR 0 T . (1.7)

Уравнение состояния в форме (1.7) носит название Клапейрона-Менделеева.

Так как масса газа

G =M , (1.8)

где - молекулярная масса газа, кг/ кмоль, аR = R 0 / , то (1.7) можно переписать в форме Клапейрона

pV = GRT . (1.9)

Разделив уравнение (1.9) на массу газа, получим

pv = RT ,

где v = V / G - удельный объем газа, м 3 /кг. Удельный объем газа связан с плотностью соотношением = 1/ v , тогда

p = RT . (1.10)

Таким образом, чем выше плотность и температура идеального газа, тем больше давление. Давление, входящее в уравнение состояния, называется абсолютным и измеряется в Паскалях (Па=Н/м 2). Если давление газа в сосуде выше давления окружающей средыр ос (барометрического давления), то абсолютное давление

р=р ман + р ос , (1.11)

где р ман изб - давление измеренное манометром (манометр измеряет избыточное давление между давлением в сосуде и окружающей средой).

В случае, когда давление газа в сосуде меньше давления окружающей среды, то используется вакууметр, тогда

р=р ос - р вак. (1.12)

Сказанное может быть представлено в графическом виде (см. рис.1.1).

Удельный объем так же какТ ир , характеризует физичское состояние тела

(1.13)

Термодинамические параметры (ТП) могут быть экстенсивными и интенсивными. К экстенсивным параметрам относятся внутренняя энергия газа U , энтальпияI = U + pV , энтропияS . Эти параметры обладают свойствами аддитивности (их можно складывать). Интенсивными параметрами являютсяp , T , удельный объемv - они не обладают свойствами аддитивности.

Что такое термодинамика? Это раздел физики, который занимается изучением свойств макроскопических систем. При этом под изучение также попадают способы превращения энергии и методы ее передачи. Термодинамика - это который изучает процессы, происходящие в системах, и их состояния. О том, что еще попадает в список изучаемых ей вещей, мы сегодня и поговорим.

Определение

На картинке ниже можно увидеть пример термограммы, полученной при изучении кувшина с горячей водой.

Термодинамика - это наука, которая опирается на обобщенные факты, полученные опытным путем. Происходящие в термодинамических системах процессы описываются при помощи использования макроскопических величин. В их список входят такие параметры, как концентрация, давление, температура и тому подобные. Понятное дело, что к отдельным молекулам они неприменимы, а сводятся к описанию системы в общем ее виде (в отличие от тех величин, которые используются в электродинамике, например).

Термодинамика - это раздел физики, который также имеет и свои законы. Они, подобно остальным, носят общий характер. Конкретные детали строения того или иного выбранного нами вещества не окажут значительного влияния на характер законов. Именно поэтому говорят, что данный раздел физики является одним из наиболее применимых (или, вернее сказать, успешно применимых) в науке и технике.

Применение

Перечислять примеры можно очень долго. Например, много решений, основанных на термодинамических законах, можно встретить в области тепловой техники или электроэнергетики. Что и говорить об описании и понимании химических реакций, явлений переноса. В некотором роде термодинамика “сотрудничает” с квантовой динамикой. Сфера их соприкосновения - это описание явления черных дыр.

Законы

Картинка выше демонстрирует суть одного из термодинамических процессов - конвекции. Теплые слои вещества поднимаются наверх, холодные - опускаются вниз.

Альтернативное название законов, которое, кстати, употребляется не в пример чаще, это начала термодинамики. На сегодняшний день их известно три (плюс одно “нулевое“, или “общее”). Но перед тем как говорить о том, что предполагает каждый из законов, попытаемся ответить на вопрос о том, что такое начала термодинамики.

Они представляют собой совокупность определенных постулатов, которые ложатся в основу понимания происходящих в макросистемах процессов. Положения начал термодинамики устанавливались эмпирическим путем по мере проведения целых серий опытов и научных исследований. Таким образом, существуют определенные доказательства, позволяющие нам взять постулаты на вооружение без единого сомнения в их точности.

Некоторые люди задаются вопросом о том, зачем термодинамике нужны эти самые законы. Ну, можно сказать, что необходимость их использования обусловлена тем, что в данном разделе физики макроскопические параметры описываются в общем виде, без какого-либо намека на рассмотрения их микроскопической природы или особенностей того же плана. Это сфера не термодинамики, а уже статистической физики, если говорить конкретнее. Еще одной важной вещью является тот факт, что начала термодинамики не зависят друг от друга. То есть одно из второго вывести не получится.

Применение

Применение термодинамики, как было сказано ранее, идет по многим направлениям. За основу берется, кстати, одно из ее начал, которое иначе интерпретируется в форме закона сохранения энергии. Термодинамические решения и постулаты успешно внедряются в такие отрасли, как энергетическая промышленность, биомедицина, химия. Вот в биологической энергетике повсеместно используется закон сохранения энергии и закон вероятности и направленности термодинамического процесса. Наряду с этим, там используются три наиболее распространенных понятия, на которых базируется вся работа и ее описание. Это термодинамическая система, процесс и фаза процесса.

Процессы

Процессы в термодинамике имеют разную степень сложности. Их насчитывается семь штук. Вообще, под процессом в таком случае следует понимать не что иное, как изменение макроскопического состояния, в которое система была приведена ранее. Следует понимать, что разница между условным начальным состоянием и конечным результатом может быть ничтожной.

Если разница бесконечно мала, то произошедший процесс мы вполне можем назвать элементарным. Если мы будем обсуждать процессы, то придется прибегнуть к упоминанию дополнительных терминов. Один из них - это “рабочее тело”. Рабочим телом называется система, в которой происходит один тепловой процесс или несколько.

Условно процессы подразделяются на неравновесные и равновесные. В случае с последним все состояния, через которые предстоит пройти термодинамической системе, являются, соответственно, неравновесными. Зачастую изменение состояний идет в таких случаях быстрыми темпами. А вот равновесные процессы близки к квазистатическим. В них изменения проходят на порядок медленнее.

Тепловые процессы, происходящие в термодинамических системах, могут быть как обратимыми, так и необратимыми. Для того чтобы понять суть, разобьем в своем представлении последовательность действий на определенные промежутки. Если мы можем сделать тот же процесс в обратном направлении с теми же “промежуточными станциями”, то его можно назвать обратимым. В противном случае сделать это не получится.

Определение: Термодинамика - наука о закономерностях превращения энергии .

В термодинамике широко используется понятие термодинамической системы .

Определение: термодинамической системой называется совокупность материальных тел, взаимодействующих, как между собой, так и с окружающей средой . Все тела находящиеся за пределами границ рассматриваемой системы называются окружающей средой .

Поскольку одно и тоже тело, одно и тоже вещество при разных условиях может находиться в разных состояниях, (пример: ледvводаvпар, одно вещество при разной температуре) вводятся, для удобства, характеристики состояния вещества - так называемые параметры состояния .

Перечислим основные параметры состояния вещества:

Температура тел - определяет направление возможного самопроизвольного перехода тепла между телами .

В настоящее время в мире существует несколько температурных шкал и единиц измерения температуры. Наиболее распространенная в Европе шкала Цельсия где нулевая температура v температура замерзания воды при атмосферном давлении, а температура кипения воды при атмосферном давлении принята за 100 градусов Цельсия (ºС). В Северной Америке используется шкала Фаренгейта. Для термодинамических расчетов очень удобна абсолютная шкала или шкала Кельвина. За ноль в этой шкале принята температура абсолютного нуля, при этой температуре прекращается всякое тепловое движение в веществе. Численно один градус шкалы Кельвина равен одному градусу шкалы Цельсия.

Температура, выраженная по абсолютной шкале, называется абсолютной температурой .

Соотношение для перехода от градусов Цельсия к градусам Кельвина:

T [K] = t [º C] + 273.15

T-температура в Кельвинах;

t v температура в градусах Цельсия.

Давление - представляет собой силу, действующею по нормали к поверхности тела и отнесенную к единице площади этой поверхности .

Для измерения давления применяются различные единицы измерения. В стандартной системе измерения СИ единицей служит Паскаль (Па).

Соотношение между единицами:

1 бар = 10 5 Па

1 кг/см 2 (атмосфера) = 9.806710 4 Па

1мм рт. ст (миллиметр ртутного столба) = 133 Па

1 мм вод. ст. (миллиметр водного столба) = 9.8067 Па

Плотность - отношение массы вещества к объему занимаемому эти веществом .

Удельный объем - величина обратная плотности т.е. отношения объема занятого веществом к его массе .

Определение: Если в термодинамической системе меняется хотя бы один из параметров любого входящего в систему тела, то в системе происходит термодинамический процесс .

Основные термодинамические параметры состояния Р, V, Т однородного тела зависят один от другого и взаимно связаны уравнением состояния:

Для идеального газа уравнение состояния записывается в виде:

P - давление

v - удельный объем

T - температура

R - газовая постоянная (у каждого газа свое значение)

Если известно уравнение состояния, то для определения состояния простейших систем достаточно знать две независимые переменные из 3-х

Р = f1 (v, т); v = f2 (Р, Т); Т = f3 (v, Р)

Термодинамические процессы часто изображаются на графиках состояния, где по осям отложены параметры состояния. Точки, на плоскости такого графика, соответствуют определенному состоянию системы, линии на графике соответствуют термодинамическим процессам, переводящим систему из одного состояния в другое.

Рассмотрим термодинамическую систему, состоящую из одного тела v какого либо газа в сосуде с поршнем, причем сосуд и поршень в данном случае является внешней средой. Пусть, для примера, происходит нагрев газа в сосуде, возможны два случая:

1) Если поршень зафиксирован и объем не меняется, то произойдет повышение давления в сосуде. Такой процесс называется изохорным (v=const), идущий при постоянном объеме;

Изохорные процессы в P - T координатах:

v 1 >v 2 >v 3

2) Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P=const), идущим при постоянном давлении.

Изобарные процессы в v - T координатах

P 1 >P 2 >P 3

Если, перемещая поршень, изменять объем газа в сосуде то, температура газа тоже будет изменяться, однако можно охлаждая сосуд при сжатии газа и нагревая при расширении можно достичь того, что температура будет постоянной при изменениях объема и давления, такой процесс называется изотермическим (Т=const).

Изотермические процессы в P-v координатах

Процесс, при котором отсутствует теплообмен между системой и окружающей средой, называется адиабатным , при этом количество теплоты в системе остается постоянными (Q=const). В реальной жизни адиабатных процессов не существует поскольку полностью изолировать систему от окружающей среды не возможно. Однако часто происходят процессы, при которых теплообменном с окружающей средой очень мал, например, быстрое сжатие газа в сосуде поршнем, когда тепло не успевает отводиться за счет нагрева поршня и сосуда.

Примерный график адиабатного процесса в P - v координатах

Определение: Круговой процесс (Цикл) - это совокупность процессов, возвращающих систему в первоначальное состояние . Число отдельных процессов может быть любым в цикле.

Понятие кругового процесса является для нас ключевым в термодинамике, поскольку работа АЭС основана на паро-водяном цикле, другими словами мы можем рассматривать испарение воды а активной зоне (АЗ), вращение паром ротора турбины, конденсацию пара и поступление воды в АЗ как некий замкнутый термодинамический процесс или цикл.

Теплота и работа .

Тела, участвующие в процессе, обмениваются между собой энергией. Энергия одних тел увеличивается, других - уменьшается. Передача энергии от одного тела к другому происходит 2-мя способами:

Первый способ передачи энергии при непосредственном контакте тел, имеющих различную температуру, путем обмена кинетической энергии между молекулами соприкасающихся тел (или лучистым переносом при помощи электромагнитных волн).

Энергия передается от более нагретого тела к менее нагретому.

Энергия кинетического движения молекул называется тепловой, поэтому такой способ передачи энергии называется передача энергии в форме теплоты. Количество энергии, полученной телом в форме теплоты, называется подведенной теплотой (сообщенной), а количество энергии, отданное телом в форме теплоты - отведенной теплотой (отнятой).

Обычное обозначение теплоты Q, размерность Дж. В практических расчетах важное значение приобретает отношение теплоты к массе - удельная теплота обозначается q размерность Дж/кг.

Подведенная теплота - положительна, отведенная - отрицательна.

Второй способ передачи энергии связан с наличием силовых полей или внешнего давления. Для передачи энергии этим способом тело должно либо передвигаться в силовом поле, либо изменять свой объем под действием внешнего давления.

Этот способ называется передачей энергии в форме работы .

Если в качестве примера тела рассматривать газ в сосуде с поршнем то в случае приложения внешней силы к поршню происходит сжатие газа - работа совершается над телом, а в случае расширения газа в сосуде работу, перемещение поршня, совершает само тело (газ).

Количество энергии, полученное телом в форме работы называется совершенной над телом работой, а отданная - затраченной телом работой .

Количество энергии в форме работы обычно обозначается L размерность Дж. Удельная работа - отношение работы к массе тела обозначается l размерность - Дж/кг.

Определение: Рабочие тело - определенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу .

Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение: Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса .

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (термодинамику равновесных процессов, она же термодинамика квазистатических процессов, она же классическая термодинамика) и неравновесную (термодинамику неравновесных процессов, она же термодинамика необратимых процессов). Равновесная термодинамика вводит в рассмотрение новые (т. е. те, которым не даётся определения в других разделах физики) переменные, такие как внутренняя энергия, температура, энтропия, химический потенциал, а также комбинации перечисленных величин. Все они носят название термодинамических параметров (величин). Предметом рассмотрения классической термодинамики служат связи термодинамических параметров друг с другом и с физическими переменными, вводимыми в рассмотрение в других разделах физики (масса, давление, поверхностное натяжение, сила тока и т. д.). Химические и фазовые реакции (фазовые переходы первого рода) также есть предмет изучения классической термодинамики, поскольку в этом случае рассматриваются связи между массами компонентов системы и их химическими потенциалами. Классическая термодинамика рассматривает термодинамические переменные как локальные в пространстве величины (на любую систему всегда действует, как минимум, одно силовое поле - поле тяготения). Время в явном виде в формулы классической термодинамики не входит. Это, однако, вовсе не означает, что классическая термодинамика рассматривает только состояния системы и не рассматривает их изменения, т. е. процессы. Просто предметом её внимания служат такие относительно медленно протекающие (квазистатические) процессы, для которых в каждый данный момент времени систему можно считать находящейся в состоянии термодинамического равновесия (равновесные процессы). Процесс можно считать квазистатическим, если время его протекания много меньше времени релаксации рассматриваемой системы.

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, т. е. в её формулы время может входить в явном виде. Любопытно, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики как полноправного раздела науки (на столетие с лишним), но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

Для энергии теорема Эйлера имеет вид:

Отсюда легко следует уравнение Гиббса - Дюгема :

Это уравнение показывает, что между интенсивными переменными существует одна связь, являющаяся следствием предположения об аддитивности свойств системы. В частности, непосредственным следствием соотношений Гиббса-Дюгема является выражение для термодинамического потенциала Гиббса через химические потенциалы компонент смеси:

Термодинамика сплошных сред

Приведённые выше формулировки аксиом термодинамики и соотношения для термодинамических потенциалов имеют место для простых моделей (сред) - для идеальных газов. Для более сложных моделей сред - упругих твердых сред, вязкоупругих сред, пластических сред, вязких жидкостей, сред с электромагнитными свойствами и других, законы термодинамики имеют более сложную формулировку, а термодинамические потенциалы формулируются в обобщенном виде с использованием тензоров . В физике сплошных сред (физике континуума) термодинамика рассматривается как её составная часть, вводящая в рассмотрение переменные, характеризующие тепловые (термические) и химические свойства среды, и их связь с другими физическими величинами, а аксиомы термодинамики включаются в общую систему аксиом.

Аксиоматика термодинамики

С аксиоматической точки зрения нулевое начало термодинамики, постулирующее существование абсолютной температуры, не является необходимым.

Первое начало вводит в рассмотрение новую физическую величину - внутреннюю энергию, и описывает (постулирует) свойства этой переменной, основное из которых состоит в том, что она необходима для соблюдения закона сохранения энергии; постулируется также экстенсивность внутренней энергии. Отсюда ясно, что корректно разбить изменение внутренней энергии в некотором процессе на теплоту и работу (тем более на теплоту, работу и работу переноса массы) невозможно без носящих достаточно произвольный характер дополнительных соглашений. К ним, в частности, принадлежат правила знаков для работы и теплоты. Другое соглашение состоит в том, что по формальным основаниям изменение внутренней энергии в химических реакциях (называемое в обиходе тепловым эффектом) мы вынуждены относить к работе (придуман даже специальный не используемый на практике термин «химическая работа»; в неравновесной термодинамике по формальной же причине теплоту трения причисляют к работе).

Подчеркнём, что математический аппарат термодинамики (да и любого другого раздела физики) зависит не только от законов природы, но и от разного рода соглашений (иногда формулируемых явно, иногда подразумеваемых), имеющих исторические корни и допускающих замену на другие соглашения, менее (а иногда и более) нам привычные. Степень произвола при формулировке соглашений обычно ограничена объективными либо субъективными факторами. Проиллюстрируем сказанное на примере замены реперных точек для температуры. Напрашивающийся вариант - переход к используемой в обыденной жизни температурной шкале Цельсия. Такая замена ведёт пусть к небольшому, но всё же усложнению привычных нам формул, да и выглядят они после этого менее изящно, хотя совершенно ясно, что расчёты как по новым, так и по старым формулам дают одинаковые результаты.

Изложенные соображения кажутся простыми и достаточно очевидными, если не банальными, но на практике о них частенько забывают. Применительно к первому началу игнорирование этих кажущихся избитыми истин привело к ситуации, которую Мёллер назвал «странным случаем в истории физики». А именно, модификация правила разбивки изменения внутренней энергии на теплоту и работу привела к изменению математического аппарата и послужила основанием для разгоревшегося во второй половине XX века спора о том, какая из двух логически безупречных версий СТО-релятивистской термодинамики с различными формулами преобразования для температуры - Планка (1907) или Отта (1963) - более правильна. Дискуссия теоретиков продолжалась несколько лет, пока де Бройль не показал, что расхождение между выводами Планка и Отта связано с произволом в определении теплоты, и их результаты не противоречат друг другу - просто авторы разговаривают на разных языках. В современных же вариантах релятивистской термодинамики вообще предпочитают иметь дело с лоренц-инвариантной абсолютной температурой (ван Кампен, Ландсберг, Шмутцер и др.). Почему же до публикации статьи Отта произвол в определениях понятий «работа» и «теплота» не бросался в глаза и никого не волновал? Да потому, что на практике, говоря о теплоте или работе некоего процесса, всегда имели в виду изменение в этом процессе одного из термодинамических потенциалов, обходя тем самым неопределённости в трактовке понятий «теплота» и «работа». То обстоятельство, что, например, совершаемую в химической реакции работу по традиции именовали «тепловым эффектом реакции», никого не смущало и не приводило ни к каким бросающимся в глаза парадоксальным или нежелательным последствиям.

Суть второго начала термодинамики с точки зрения аксиоматического подхода состоит в следующем. Для описания термических явлений переменной «внутренняя энергия» недостаточно, и для равновесных систем требуется ещё одна новая физическая величина в качестве независимой переменной. Таковой было бы логично выбрать температуру, но путь развития науки извилист, и второе начало в современной формулировке представляет собой набор постулатов о существовании энтропии и её свойствах; постулируется, например, экстенсивность энтропии. Один из важнейших постулатов гласит, что называемая термодинамической температурой функция внутренней энергии и энтропии имеет свойства абсолютной температуры. Такой подход позволяет обойти поминавшийся выше произвол в определениях понятий «работа» и «теплота», сводящий на нет кажущееся изящество классических формулировок второго начала. Отметим, что аксиоматику термодинамики можно строить, полагая независимой переменной не энтропию, а температуру. За это приходится приносить в жертву либо привычный нам математический аппарат термодинамики, к чему мы пока не готовы, либо стройность базовой системы аксиом.

Третье начало дополняет дополняет систему аксиом второго начала.

Аксиом (начал, постулатов), на которых базируется термодинамика, не три и даже не четыре (если считать нулевое начало), поэтому их уже не нумеруют. Наконец, помимо аксиом, соглашений и теорем в термодинамике есть еще и «принципы» (например, принцип термодинамической допустимости Путилова в равновесной термодинамике или принцип Кюри в неравновесной термодинамике), т. е. утверждения, не являющиеся соглашениями или теоремами, но и не претендующие на роль законов природы. Их не следует путать с аксиомами или теоремами термодинамики, в названиях которых по традиции используют слово «принцип» (принцип Нернста, принцип Ле-Шателье - Брауна).

Примечания

Парадоксы

См. также

Литература

  • Базаров И. П. Термодинамика. М.: Высшая школа, 1991, 376 с.
  • Базаров И. П., Геворкян Э. В., Николаев П. Н. Неравновесная термодинамика и физическая кинетика. М.: Изд-во МГУ, 1989.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. М.: Едиториал УРСС, 2003. 120 с.
  • Базаров И. П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979.
  • Гиббс Дж. В. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
  • Де Гроот С. Р. Термодинамика необратимых процессов. М.: Гос. Изд.-во техн.-теор. лит., 1956. 280 с.
  • Де Гроот С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  • Гуров К. П. Феноменологическая термодинамика необратимых процессов (физические основы) . - М.: Наука, Глав. ред. физ-мат лит-ры, 1978. 128 с.
  • Дьярмати И. Неравновесная термодинамика. Теория поля и вариационные принципы. М.: Мир, 1974. 404 с.
  • Зубарев Д.Н. Неравновесная статистическая термодинамика. М .: Наука, 1971. 416 с.
  • Карно С., Клаузиус Р., Томсон В. (лорд Кельвин), Больцман Л., Смолуховский М. Под ред. и комментариями и предисловием: Тимирязев А. К. Второе начало термодинамики. Антология. Изд.2. Серия: Физико-математическое наследие: физика (термодинамика и статистическая механика). - М.: Изд-во ЛКИ, 2007. - 312 с.
  • Квасников И. А.

Термодинамика - раздел прикладной физики или теоретической теплотехники, в котором исследуется превращение движения в теплоту и наоборот. В термодинамике рассматриваются не только вопросы распространения теплоты, но и физические и химические изменения, связанные с поглощением теплоты веществом, а также, наоборот, выделение теплоты в ходе физических и химических превращений.
Необходимость термодинамики

Термодинамика исторически возникла как эмпирическая наука об основных способах преобразования внутренней энергии нагретых тел в механическую. Однако в процессе своего развития термодинамика проникла во все разделы физики, где возможно ввести понятие «внутренняя энергия» и позволила теоретически предсказать многие явления задолго до появления строгой теории этих явлений.
* 2-й закон термодинамики: Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в тоже время эквивалентных формулировок этого закона. 1 - Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких либо других изменений в системе. Это явление называют рассеиванием или дисперсией энергии. 2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

* 3-й закон термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю

Законы термодинамики

Термодинамика основывается на трёх законах, которые сформулированы на основе экспериментальных данных и поэтому могут быть приняты как постулаты.

* 1-й закон термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как δQ = δA + d"U, где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты и элементарная работа, совершенная над системой соответственно. Нужно учитывать, что δA и δQ нельзя считать дифференциалами в обычном смысле этого понятия. С точки зрения квантовых представлений этот закон можно интерпретировать следующим образом: dU есть изменение энергии данной квантовой системы, δA есть изменение энергии системы, обусловленное изменением заселённости энергетических уровней системы, а δQ есть изменение энергии квантовой системы, обусловленное изменением структуры энергетических уровней.