Различные агрегатные состояния вещества определяются силами. Агрегатное состояние веществ

ОПРЕДЕЛЕНИЕ

Вещество - это совокупность большого количества частиц (атомов, молекул или ионов).

Вещества имеют сложное строение. Частицы в веществе взаимодействуют между собой. Характер взаимодействия частиц в веществе определяет его агрегатное состояние.

Виды агрегатных состояний

Выделяют следующие агрегатные состояния: твердое, жидкое, газ, плазма.

В твердом состоянии частицы, как правило, объединены в правильную геометрическую структуру. Энергия связей частиц больше, чем энергия их тепловых колебаний.

Если температуру тела увеличивать, увеличивается энергия тепловых колебаний частиц. При некоторой температуре энергия тепловых колебаний становится больше, чем энергия связей. При такой температуре связи между частицами разрушаются и образуются снова. При этом частицы совершают различные виды движений (колебания, вращения, перемещения друг относительно друга и т.д.). При этом они еще контактируют между собой. Правильная геометрическая структура нарушена. Вещество находится в жидком состоянии.

При дальнейшем росте температуры тепловые колебания усиливаются, связи между частицами становятся еще слабее и практически отсутствуют. Вещество находится в газообразном состоянии. Самой простой моделью вещества является идеальный газ, в котором считается, что частицы движутся в любых направлениях свободно, взаимодействуют между собой только в момент соударений, при этом выполняются законы упругого удара.

Можно сделать вывод о том, что с ростом температуры вещество переходит от упорядоченной структуры в неупорядоченное состояние.

Плазма - это газообразное вещество, состоящее из смеси нейтральных частиц ионов и электронов.

Температура и давление в разных агрегатных состояниях вещества

Разные агрегатные состояния вещества определяют: температура и давление. Низкое давление и высокая температура соответствуют газам. При низких температурах, обычно вещество находится в твердом состоянии. Промежуточные температуры относят к веществам в жидком состоянии. Для характеристики агрегатных состояний вещества часто применяется фазовая диаграмма. Это диаграмма, отражающая зависимость агрегатного состояния от давления и температуры.

Основной особенностью газов является их способность к расширению и сжимаемость. Газы не обладают формой, принимают форму сосуда, в который помещены. Объем газа определяет объем сосуда. Газы могут смешиваться между собой в любых пропорциях.

Жидкость не имеет формы, но имеют объем. Сжимаются жидкости плохо, только при высоком давлении.

Твердые вещества имеют форму и объем. В твердом состоянии могут находиться соединения с металлическими, ионными и ковалентными связями.

Примеры решения задач

ПРИМЕР 1

Задание Изобразите фазовую диаграмму состояний для некоего абстрактного вещества. Объясните ее смысл.
Решение Сделаем рисунок.

Диаграмма состояния приведена на рис.1. Она состоит из трех областей, которые соответствуют кристаллическому (твердому) состоянию вещества, жидкости и газообразному состоянию. Данные области разделяются кривыми, которые обозначают границы взаимно обратных процессов:

01 - плавление - кристаллизация;

02 - кипение - конденсация;

03 - сублимация - десублимация.

Точка пересечения всех кривых (О) - тройная точка. В этой точке вещество может существовать в трёх агрегатных состояниях. Если температура вещества выше критической () (точка 2), то кинетическая энергия частиц больше потенциальной энергии их взаимодействия, при таких температурах вещество становится газом при всяком давлении. Из фазовой диаграммы видно, что если давление больше, чем , то при увеличении температуры твердое тело плавится. После расплавления, рост давления ведет к увеличению температуры кипения. Если давление меньше, чем , то увеличение температуры твердого тела ведет к его переходу непосредственно в газообразное состояние (сублимация) (точка G).

ПРИМЕР 2

Задание Объясните, что отличает одно агрегатное состояние от другого?
Решение В различных агрегатных состояниях атомы (молекулы) имеют разные расположения. Так атомы (молекулы или ионы) кристаллических решеток расположены упорядоченно, могут совершать небольшие колебания около положений равновесия. Молекулы же газов находятся в неупорядоченном состоянии и могут перемещаться на значительные расстояния. Кроме того, внутренняя энергия веществ в разных агрегатных состояниях (для одинаковых масс вещества) при разных температурах различна. Процессы перехода из одного агрегатного состояния в другое сопровождаются изменением внутренней энергии. Переход: твердое вещество - жидкость - газ, означает увеличение внутренней энергии, так как происходит увеличение кинетической энергии движения молекул.

Определение 1

Агрегатные состояния вещества (от лат. “aggrego” означает “присоединяю”, “связываю”) – это состояния одного и того же вещества в твердом, жидком и газообразном виде.

При переходе из одного состояния в другое наблюдается скачкообразное изменение энергии, энтропии, плотности и прочих свойств вещества.

Твердые и жидкие тела

Определение 2

Твердые тела – это тела, которые отличаются постоянством своей формы и объема.

В твердых телах межмолекулярные расстояния маленькие, а потенциальную энергию молекул можно сравнить с кинетической.

Твёрдые тела подразделяются на 2 вида:

  1. Кристаллические;
  2. Аморфные.

В состоянии термодинамического равновесия находятся только лишь кристаллические тела. Аморфные же тела по факту представляют собой метастабильные состояния, которые по строению схожи с неравновесными, медленно кристаллизующимися жидкостями. В аморфном теле происходит чересчур медленный процесс кристаллизации, процесс постепенного преобразования вещества в кристаллическую фазу. Разница кристалла от аморфного твердого тела состоит, в первую очередь, в анизотропии его свойств. Свойства кристаллического тела определяются в зависимости от направления в пространстве. Разнообразные процессы (например, теплопроводность, электропроводность, свет, звук) распространяются в разных направлениях твердого тела по-разному. А вот аморфные тела (например, стекло, смолы, пластмассы) изотропные, как и жидкости. Разница аморфных тел от жидкостей заключается лишь только в том, что последние текучие, в них не происходят статические деформации сдвига.

У кристаллических тел правильное молекулярное строение. Именно за счет правильного строения кристалл имеет анизотропные свойства. Правильное расположение атомов кристалла создает так называемую кристаллическую решетку. В разных направлениях месторасположение атомов в решетке различное, что и приводит к анизотропии. Атомы (ионы либо целые молекулы) в кристаллической решетке совершают беспорядочное колебательное движение возле средних положений, которые и рассматриваются в качестве узлов кристаллической решетки. Чем выше температура, тем выше энергия колебаний, а значит, и средняя амплитуда колебаний. В зависимости от амплитуды колебаний определяется размер кристалла. Увеличение амплитуды колебаний приводит к увеличению размеров тела. Таким образом, объясняется тепловое расширение твердых тел.

Определение 3

Жидкие тела – это тела, имеющие определенный объем, но не имеющие упругой формы.

Для вещества в жидком состоянии характерно сильное межмолекулярное взаимодействие и малая сжимаемость. Жидкость занимает промежуточное положение между твердым телом и газом. Жидкости, также как и газы, обладают изотpопными свойствами. Помимо этого, жидкость обладает свойством текучести. В ней, как и в газах, нет касательного напряжения (напряжения на сдвиг) тел. Жидкости тяжелые, то есть их удельные веса можно сравнить с удельными весами твердых тел. Вблизи температур кристаллизации их теплоемкости и прочие тепловые свойства близки к соответствующим свойствам твердых тел. В жидкостях наблюдается до заданной степени правильное расположение атомов, но только лишь в маленьких областях. Здесь атомы также проделывают колебательное движение около узлов квазикристаллической ячейки, однако в отличие от атомов твердого тела они периодически перескакивают от одного узла к другому. В итоге движение атомов будет весьма сложное: колебательное, но вместе с тем центр колебаний перемещается в пространстве.

Определение 4

Газ – это такое состояние вещества, при котором расстояния между молекулами огромны.

Силами взаимодействия между молекулами при небольших давлениях можно пренебречь. Частицы газа заполоняют весь объем, который предоставлен для газа. Газы рассматривают как сильно перегретые либо ненасыщенные пары. Особый вид газа – плазма (частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов почти одинаковые). То есть плазма – это газ из заряженных частиц, взаимодействующих между собой при помощи электрических сил на большом расстоянии, но не имеющих ближнего и дальнего расположения частиц.

Как известно, вещества способны переходить из одного агрегатного состояния в другое.

Определение 5

Испарение – это процесс изменения агрегатного состояния вещества, при котором с поверхности жидкости либо твердого тела вылетают молекулы, кинетическая энергия которых преобразовывает потенциальную энергию взаимодействия молекул.

Испарение является фазовым переходом. При испарении часть жидкости или твердого тела преобразуется в пар.

Определение 6

Вещество в газообразном состоянии, которое находится в динамическом равновесии с жидкостью, называется насыщенным паром . При этом изменение внутренней энергии тела равняется:

∆ U = ± m r (1) ,

где m – это масса тела, r – это удельная теплота парообразования (Д ж / к г) .

Определение 7

Конденсация представляет собой процесс, обратный парообразованию.

Изменение внутренней энергии рассчитывается по формуле (1) .

Определение 8

Плавление – это процесс преобразования вещества из твердого состояния в жидкое, процесс изменения агрегатного состояния вещества.

При нагревании вещества растет его внутренняя энергия, поэтому увеличивается скорость теплового движения молекул. При достижении веществом своей температуры плавления кристаллическая решетка твердого тела разрушается. Связи между частицами также разрушаются, растет энергия взаимодействия между частицами. Теплота, которая передается телу, идет на увеличение внутренней энергии данного тела, и часть энергии расходуется на совершение работы по изменению объема тела при его плавлении. У многих кристаллических тел объем увеличивается при плавлении, однако есть исключения (к примеру, лед, чугун). Аморфные тела не обладают определенной температурой плавления. Плавление представляет собой фазовый переход, который характеризуется скачкообразным изменением теплоемкости при температуре плавления. Температура плавления зависит от вещества и она остается неизменной в ходе процесса. Тогда изменение внутренней энергии тела равняется:

∆ U = ± m λ (2) ,

где λ – это удельная теплота плавления (Д ж / к г) .

Определение 9

Кристаллизация представляет собой процесс, обратный плавлению.

Изменение внутренней энергии рассчитывается по формуле (2) .

Изменение внутренней энергии каждого тела системы при нагревании или охлаждении вычисляется по формуле:

∆ U = m c ∆ T (3) ,

где c – это удельная теплоемкость вещества, Д ж к г К, △ T – это изменение температуры тела.

Определение 10

При рассматривании преобразований веществ из одних агрегатных состояний в другие нельзя обойтись без так называемого уравнения теплового баланса : суммарное количество теплоты, выделяемое в теплоизолированной системе, равняется количеству теплоты (суммарному), которое в данной системе поглощается.

Q 1 + Q 2 + Q 3 + . . . + Q n = Q " 1 + Q " 2 + Q " 3 + . . . + Q " k .

По сути, уравнение теплового баланса – это закон сохранения энергии для процессов теплообмена в термоизолированных системах.

Пример 1

В теплоизолированном сосуде находятся вода и лед с температурой t i = 0 ° C . Масса воды m υ и льда m i соответственно равняется 0 , 5 к г и 60 г. В воду впускают водяной пар массой m p = 10 г при температуре t p = 100 ° C . Какой будет температура воды в сосуде после того, как установится тепловое равновесие? При этом теплоемкость сосуда учитывать не нужно.

Рисунок 1

Решение

Определим, какие процессы осуществляются в системе, какие агрегатные состояния вещества мы наблюдали и какие получили.

Водяной пар конденсируется, отдавая при этом тепло.

Тепловая энергия идет на плавление льда и, может быть, нагревание имеющейся и полученной изо льда воды.

Прежде всего, проверим, сколько теплоты выделяется при конденсации имеющейся массы пара:

Q p = - r m p ; Q p = 2 , 26 · 10 6 · 10 - 2 = 2 , 26 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть r = 2 , 26 · 10 6 Д ж к г – удельная теплота парообразования (применяется и для конденсации).

Для плавления льда понадобится следующее количество тепла:

Q i = λ m i Q i = 6 · 10 - 2 · 3 , 3 · 10 5 ≈ 2 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть λ = 3 , 3 · 10 5 Д ж к г – удельная теплота плавления льда.

Выходит, что пар отдает тепла больше, чем необходимо, только для расплавления имеющегося льда, значит, уравнение теплового баланса запишем следующим образом:

r m p + c m p (T p - T) = λ m i + c (m υ + m i) (T - T i) .

Теплота выделяется при конденсации пара массой m p и остывании воды, образуемой из пара от температуры T p до искомой T . Теплота поглощается при плавлении льда массой m i и нагревании воды массой m υ + m i от температуры T i до T . Обозначим T - T i = ∆ T для разности T p - T получаем:

T p - T = T p - T i - ∆ T = 100 - ∆ T .

Уравнение теплового баланса будет иметь вид:

r m p + c m p (100 - ∆ T) = λ m i + c (m υ + m i) ∆ T ; c (m υ + m i + m p) ∆ T = r m p + c m p 100 - λ m i ; ∆ T = r m p + c m p 100 - λ m i c m υ + m i + m p .

Сделаем вычисления с учетом того, что теплоемкость воды табличная

c = 4 , 2 · 10 3 Д ж к г К, T p = t p + 273 = 373 К, T i = t i + 273 = 273 К: ∆ T = 2 , 26 · 10 6 · 10 - 2 + 4 , 2 · 10 3 · 10 - 2 · 10 2 - 6 · 10 - 2 · 3 , 3 · 10 5 4 , 2 · 10 3 · 5 , 7 · 10 - 1 ≈ 3 (К) ,

тогда T = 273 + 3 = 276 К

Ответ: Температура воды в сосуде после установления теплового равновесия будет равняться 276 К.

Пример 2

На рисунке 2 изображен участок изотермы, который отвечает переходу вещества из кристаллического в жидкое состояние. Что соответствует данному участку на диаграмме p , T ?

Рисунок 2

Ответ: Вся совокупность состояний, которые изображены на диаграмме p , V горизонтальным отрезком прямой на диаграмме p , T показано одной точкой, которая определяет значения p и T , при которых происходит преобразование из одного агрегатного состояния в другое.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества . Агрегатное состояние не влияет на химические свойства и химическое строение вещества, а влияет на физическое состояние (плотность, вязкость, температуру и т.д.) и скорость химических процессов. Например, вода в газообразном состоянии – пар, в жидком – жидкость, в твердом – лед, снег, иней. Химический состав один и тот же, а физические свойства различны. Различие физических свойств связано с разными расстояниями между молекулами вещества и силами притяжения между ними.

Для газов характерно большие расстояния между молекулами и малые силы притяжения. Молекулы газов находятся в хаотичном движении. Это объясняет то, что плотность газов мала, они не имеют собственной формы, занимают весь предоставленный им объем, при изменении давления газы изменяют свой объем.

В жидком состоянии молекулы более сближены, силы межмолекулярного притяжения возрастают, молекулы находятся в хаотично-поступательном движении. Поэтому плотность жидкостей намного больше плотности газов, объем определенный, почти не зависит от давления, но жидкости не имеют собственной формы, а принимают форму предоставленного сосуда. Для них характерен «ближний порядок», то есть зачатки кристаллической структуры (будет рассмотрено далее).

В твердых телах частицы (молекулы, атомы, ионы) сближены настолько друг с другом, что силы притяжения уравновешиваются силами отталкивания, то есть, у частиц наблюдаются колебательные движения, и нет поступательных. Поэтому частицы твердых тел располагаются в определенных точках пространства, для них характерен «дальний порядок» (будет рассмотрен далее), твердые тела имеют определенную форму, объем.

Плазма – это любой объект, в котором хаотически движутся электрически заряженные частицы (электроны, ядра или ионы). Плазменное состояние в природе является господствующим и возникает под действием ионизирующих факторов: высокой температуры, электрического разряда, электромагнитных излучений высоких энергий и т.д. Различают два вида плазмы: изотермическую и газоразрядную . Первая возникает под действием высокой температуры, достаточно устойчива, существует долго, например, солнце, звезды, шаровая молния. Вторая возникает под действием электрического разряда и устойчива только при наличии электрического поля, например, в газоосветительных трубках. Плазму можно рассматривать как ионизированный газ, который подчиняется законам идеального газа.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIIIначале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O

Инструментальные методы анализа
В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определен

Введение

1.Агрегатное состояние вещества – газ

2.Агрегатное состояние вещества – жидкость

3.Агрегатное состояние вещества – твердое тело

4.Четвертое состояние вещества – плазма

Заключение

Список использованной литературы

Введение

Как известно, многие вещества в природе могут находиться в трех состояниях: твердом, жидком и газообразном.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма.

Целью данной работы является – рассмотреть существующие агрегатные состояния вещества, выявить все их достоинства и недостатки.

Для этого необходимо выполнить и рассмотреть следующие агрегатные сотояния:

2. жидкости

3. твердые вещества

3. Агрегатное состояние вещества – твердое тело

Твёрдое тело, одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости, газов, плазмы ) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия. Наряду с кристаллическим состоянием Т. т. существует аморфное состояние, в том числе стеклообразное состояние. Кристаллы характеризуются дальним порядком в расположении атомов. В аморфных телах дальний порядок отсутствует.

Агрегатные состояния вещества (от латинского aggrego - присоединяю, связываю) - это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров вещества.

Газ (французское gaz, происшедшее от греческого chaos - хаос) - это агрегатное состояние вещества, в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

  • Газы можно рассматривать как значительно перегретые или малонасыщенные пары.
  • Над поверхностью каждой жидкости вследствие испарения находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как давление пара и жидкости становится одинаковым.
  • Уменьшение объема насыщенного пара вызывает конденсацию части пара, а не повышение давления. Поэтому давление пара не может быть выше давления насыщенного пара. Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки кипения, соответствующей данному давлению, пар называется перегретым.

Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным.

  1. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится).
  2. Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое.
  3. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных давлении и температуре сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием - понятием фазы.

Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуре плавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние).

Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик.

Кристаллическое твердое состояние вещества - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.