Решение условного экстремума онлайн. Экстремум функции нескольких переменных Понятие экстремума функции нескольких переменных

Необходимое и достаточные условия экстремума функций двух переменных. Точка называется точкой минимума (максимума) функции если в некоторой окрестности точки функция определена и удовлетворяет неравенству (соответственно Точки максимума и минимума называются точками экстремума функции.

Необходимое условие экстремума. Если в точке экстремума функция имеет первые частные производные, то они обращаются в этой точке в нуль. Отсюда следует, что для отыскания точек экстремума такой функции следует решить систему уравнений Точки, координаты которых удовлетворяют этой системе, называются критическими точками функции. Среди них могут быть точки максимума, точки минимума, а также точки, не являющиеся точками экстремума.

Достаточные условия экстремума используются для выделения точек экстремума из множества критических точек и перечислены ниже.

Пусть функция имеет в критической точке непрерывные вторые частные производные. Если в этой точке выполняется

условие то она является точкой минимума при и точкой максимума при Если в критической точке то она не является точкой экстремума. В случае требуется более тонкое исследование характера критической точки, которая в этом случае может быть точкой экстремума, а может и не быть таковой.

Экстремумы функций трех переменных. В случае функции трех переменных определения точек экстремума дословно повторяют соответствующие определения для функции двух переменных. Ограничимся изложением порядка исследования функции на экстремум. Решая систему уравнений следует найти критические точки функции, а затем в каждой из критических точек вычислить величины

Если все три величины положительны, то рассматриваемая критическая точка является точкой минимума; если то данная критическая точка является точкой максимума.

Условный экстремум функции двух переменных. Точка называется точкой условного минимума (максимума) функции при условии если существует окрестность точки в которой функция определена и в которой (соответственно ) для всех точек координаты которых удовлетворяют уравнению

Для нахождения точек условного экстремума используют функцию Лагранжа

где число называется множителем Лагранжа. Решая систему трех уравнений

находят критические точки функции Лагранжа (а также значение вспомогательного множителя Л). В этих критических точках может быть условный экстремум. Приведенная система дает лишь необходимые условия экстремума, но не достаточные: ей могут удовлетворять координаты точек, не являющихся точками условного экстремума. Однако, исходя из существа задачи, часто удается установить характер критической точки.

Условный экстремум функции многих переменных. Рассмотрим функцию переменных при условии, что связаны уравнениями

Определение1 : Говорят, что функция имеет в точке локальный максимум, если существует такая окрестность точки, для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции < 0.

Определение2 : Говорят, что функция имеет в точке локальный минимум, если существует такая окрестность точки, для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0.

Определение 3 : Точки локальных минимума и максимума называются точками экстремума .

Условные Экстремумы

При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция и линия L на плоскости 0xy . Задача состоит в том, чтобы на линии L найти такую точку P(x, y), в которой значение функции является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L , находящихся вблизи точки P . Такие точки P называются точками условного экстремума функции на линии L . В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L .

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума ) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Поясню сказанное обычным примером. Графиком функции является верхняя полусфера (Приложение 3 (Рис 3)).

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение x+y-1=0 ), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке, лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции на данной линии; ей соответствует точка M 1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области нам приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Приступим теперь к практическому отысканию точек условного экстремума функции Z= f(x, y) при условии, что переменные x и y связаны уравнением (x, y) = 0. Это соотношение будем называть уравнение связи. Если из уравнения связи y можно выразить явно через х: y=(x), мы получим функцию одной переменной Z= f(x, (x)) = Ф(х).

Найдя значение х, при которых эта функция достигает экстремума, и определив затем из уравнения связи соответствующие им значения у, мы и получим искомые точки условного экстремума.

Так, в вышеприведенном примере из уравнения связи x+y-1=0 имеем y=1-х. Отсюда

Легко проверить, что z достигает максимума при х = 0,5; но тогда из уравнения связи y=0,5, и мы получаем как раз точку P, найденную из геометрических соображений.

Очень просто решается задача на условный экстремум и тогда, когда уравнение связи можно представить параметрическими уравнениями х=х(t), y=y(t). Подставляя выражения для х и у в данную функцию, снова приходим к задаче отыскания экстремума функции одной переменной.

Если уравнение связи имеет более сложный вид и нам не удается ни явно выразить одну переменную через другую, ни заменить его параметрическими уравнениями, то задача отыскания условного экстремума становится более трудной. Будем по-прежнему считать, что в выражении функции z= f(x, y) переменная (x, y) = 0. Полная производная от функции z= f(x, y) равна:

Где производная y`, найдена по правилу дифференцирования неявной функции. В точках условного экстремума найденная полная производная должна ровняться нулю; это дает одно уравнение, связывающее х и у. Так как они должны удовлетворять еще и уравнению связи, то мы получаем систему двух уравнений с двумя неизвестными

Преобразуем эту систему к гораздо более удобной, записав первое уравнение в виде пропорции и введя новую вспомогательную неизвестную:

(знак минус перед поставлен для удобства). От этих равенств легко перейти к следующей системе:

f` x =(x,y)+` x (x,y)=0, f` y (x,y)+` y (x,y)=0 (*),

которая вместе с уравнением связи (x, y) = 0 образует систему трех уравнений с неизвестными х, у и.

Эти уравнения (*) легче всего запомнить при помощи следующего правила: для того, чтобы найти точки, которые могут быть точками условного экстремума функции

Z= f(x, y) при уравнении связи (x, y) = 0, нужно образовать вспомогательную функцию

Ф(х,у)=f(x,y)+(x,y)

Где -некоторая постоянная, и составить уравнения для отыскания точек экстремума этой функции.

Указанная система уравнений доставляет, как правило, только необходимые условия, т.е. не всякая пара значений х и у, удовлетворяющая этой системе, обязательно является точкой условного экстремума. Достаточные условия для точек условного экстремума я приводить не стану; очень часто конкретное содержание задачи само подсказывает, чем является найденная точка. Описанный прием решения задач на условный экстремум называется методом множителей Лагранжа.

Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.

Лекция 5.

Определение 5.1. Точка М 0 (х 0 , у 0) называется точкой максимума функции z = f (x, y), если f (x o , y o) > f (x, y) для всех точек (х, у) М 0 .

Определение 5.2. Точка М 0 (х 0 , у 0) называется точкой минимума функции z = f (x, y), если f (x o , y o) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М 0 .

Замечание 1. Точки максимума и минимума называются точками экстремума функции нескольких переменных.

Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.

Теорема 5.1 (необходимые условия экстремума). Если М 0 (х 0 , у 0) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.

Доказательство.

Зафиксируем значение переменной у , считая у = у 0 . Тогда функция f (x, y 0) будет функцией одной переменной х , для которой х = х 0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .

Определение 5.3. Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.

Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.

Теорема 5.2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М 0 (х 0 , у 0) , являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:

1) f (x, y) имеет в точке М 0 максимум, если AC – B ² > 0, A < 0;

2) f (x, y) имеет в точке М 0 минимум, если AC – B ² > 0, A > 0;

3) экстремум в критической точке отсутствует, если AC – B ² < 0;



4) если AC – B ² = 0, необходимо дополнительное исследование.

Доказательство.

Напишем формулу Тейлора второго порядка для функции f (x, y), помня о том, что в стационарной точке частные производные первого порядка равны нулю:

где Если угол между отрезком М 0 М , где М (х 0 + Δх, у 0 + Δу ), и осью Ох обозначить φ, то Δх = Δρ cosφ, Δy = Δρsinφ. При этом формула Тейлора примет вид: . Пусть Тогда можно разделить и умножить выражение в скобках на А . Получим:

Рассмотрим теперь четыре возможных случая:

1) AC-B ² > 0, A < 0. Тогда , и при достаточно малых Δρ. Следовательно, в некоторой окрестности М 0 f (x 0 + Δx, y 0 + Δy) < f (x 0 , y 0) , то есть М 0 – точка максимума.

2) Пусть AC – B ² > 0, A > 0. Тогда , и М 0 – точка минимума.

3) Пусть AC-B ² < 0, A > 0. Рассмотрим приращение аргументов вдоль луча φ = 0. Тогда из (5.1) следует, что , то есть при движении вдоль этого луча функция возрастает. Если же перемещаться вдоль луча такого, что tg φ 0 = -A/B, то , следовательно, при движении вдоль этого луча функция убывает. Значит, точка М 0 не является точкой экстремума.

3`) При AC – B ² < 0, A < 0 доказательство отсутствия экстремума проводится

аналогично предыдущему.

3``) Если AC – B ² < 0, A = 0, то . При этом . Тогда при достаточно малых φ выражение 2B cosφ + C sinφ близко к 2В , то есть сохраняет постоянный знак, а sinφ меняет знак в окрестности точки М 0 . Значит, приращение функции меняет знак в окрестности стационарной точки, которая поэтому не является точкой экстремума.

4) Если AC – B ² = 0, а , , то есть знак приращения определяется знаком 2α 0 . При этом для выяснения вопроса о существовании экстремума необходимо дальнейшее исследование.

Пример. Найдем точки экстремума функции z = x ² - 2xy + 2y ² + 2x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда AC – B ² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).

Определение 5.4. Если аргументы функции f (x 1 , x 2 ,…, x n) связаны дополнительными условиями в виде m уравнений (m < n) :

φ 1 (х 1 , х 2 ,…, х n) = 0, φ 2 (х 1 , х 2 ,…, х n) = 0, …, φ m (х 1 , х 2 ,…, х n) = 0, (5.2)

где функции φ i имеют непрерывные частные производные, то уравнения (5.2) называются уравнениями связи .

Определение 5.5. Экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2) называется условным экстремумом .

Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ(х,у) = 0, задающим некоторую кривую в плоскости Оху . Восставив из каждой точки этой кривой перпендикуляры к плоскости Оху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ(х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).

Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:

Определение 5.6. Функция L (x 1 , x 2 ,…, x n) = f (x 1 , x 2 ,…, x n) + λ 1 φ 1 (x 1 , x 2 ,…, x n) +

+ λ 2 φ 2 (x 1 , x 2 ,…, x n) +…+λ m φ m (x 1 , x 2 ,…, x n) , (5.3)

где λ i – некоторые постоянные, называется функцией Лагранжа , а числа λ i неопределенными множителями Лагранжа .

Теорема 5.3 (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).

Доказательство. Уравнение связи задает неявную зависимость у от х , поэтому будем считать, что у есть функция от х : у = у(х). Тогда z есть сложная функция от х , и ее критические точки определяются условием: . (5.4) Из уравнения связи следует, что . (5.5)

Умножим равенство (5.5) на некоторое число λ и сложим с (5.4). Получим:

, или .

Последнее равенство должно выполняться в стационарных точках, откуда следует:

(5.6)

Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5.6) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.

Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 5.2.

Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2), можно определить как решения системы (5.7)

Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y – 1). Система (5.6) при этом выглядит так:

Откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = - 0,5 (x – y )² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y) имеет максимум, а z = xy – условный максимум.

Условный экстремум.

Экстремумы функции нескольких переменных

Метод наименьших квадратов.

Локальный экстремум ФНП

Пусть дана функция и = f (Р), РÎDÌR n и пусть точка Р 0 (а 1 , а 2 , ..., а п ) –внутренняя точка множества D.

Определение 9.4.

1) Точка Р 0 называется точкой максимума функции и = f (Р), если существует окрестность этой точки U(P 0) Ì D такая, что для любой точки Р(х 1 , х 2 , ..., х п )Î U(P 0) , Р¹Р 0 , выполняется условие f (P) £ f (P 0) . Значение f (P 0) функции в точке максимума называется максимумом функции и обозначается f (P 0) = max f (P) .

2) Точка Р 0 называется точкой минимума функции и = f (Р), если существует окрестность этой точки U(P 0)Ì D такая, что для любой точки Р(х 1 , х 2 , ..., х п )ÎU(P 0), Р¹Р 0 , выполняется условие f (P) ³ f (P 0) . Значение f (P 0) функции в точке минимума называется минимумом функции и обозначается f (P 0) = min f (P).

Точки минимума и максимума функции называются точками экстремумов , значения функции в точках экстремумов называются экстремумами функции.

Как следует из определения, неравенства f (P) £ f (P 0) , f (P) ³ f (P 0) должны выполняться только в некоторой окрестности точки Р 0 , а не во всей области определения функции, значит, функция может иметь несколько однотипных экстремумов (несколько минимумов, несколько максимумов). Поэтому определенные выше экстремумы называют локальными (местными) экстремумами.

Теорема 9.1.(необходимое условие экстремума ФНП)

Если функция и = f (х 1 , х 2 , ..., х п ) имеет экстремум в точке Р 0 , то ее частные производные первого порядка в этой точке либо равны нулю, либо не существуют.

Доказательство. Пусть в точке Р 0 (а 1 , а 2 , ..., а п ) функция и = f (P) имеет экстремум, например, максимум. Зафиксируем аргументы х 2 , ..., х п , положив х 2 =а 2 ,..., х п = а п . Тогда и = f (P) = f 1 ((х 1 , а 2 , ..., а п ) есть функция одной переменной х 1 . Так как эта функция имеет при х 1 = а 1 экстремум (максимум), то f 1 ¢=0или не существует при х 1 =а 1 (необходимое условие существования экстремума функции одной переменной). Но , значит или не существует в точке Р 0 – точке экстремума. Аналогично можно рассмотреть частные производные по остальным переменным. ЧТД.

Точки области определения функции, в которых частные производные первого порядка равны нулю или не существуют, называются критическими точками этой функции.

Как следует из теоремы 9.1, точки экстремума ФНП следует искать среди критических точек функции. Но, как и для функции одной переменной, не всякая критическая точка является точкой экстремума.

Теорема 9.2.(достаточное условие экстремума ФНП)

Пусть Р 0 – критическая точка функции и = f (P) и – дифференциал второго порядка этой функции. Тогда

а) если d 2 u (P 0) > 0 при , то Р 0 – точка минимума функции и = f (P);

б) если d 2 u (P 0) < 0 при , то Р 0 – точка максимума функции и = f (P);

в) если d 2 u (P 0) не определен по знаку, то Р 0 не является точкой экстремума;

Эту теорему рассмотрим без доказательства.

Заметим, что в теореме не рассмотрен случай, когда d 2 u (P 0) = 0 или не существует. Это означает, что вопрос о наличие экстремума в точке Р 0 при таких условиях остается открытым – нужны дополнительные исследования, например, исследование приращения функции в этой точке.

В более подробных курсах математики доказывается, что в частности для функции z = f (x , y ) двух переменных, дифференциал второго порядка которой есть сумма вида

исследование наличия экстремума в критической точке Р 0 можно упростить.

Обозначим , , . Составим определитель

.

Оказывается:

d 2 z > 0 в точке Р 0 , т.е. Р 0 – точка минимума, если A (P 0) > 0 и D(Р 0) > 0;

d 2 z < 0 в точке Р 0 , т.е. Р 0 – точка максимума, если A (P 0) < 0 , а D(Р 0) > 0;

если D(Р 0) < 0, то d 2 z в окрестности точки Р 0 меняет знак и экстремума в точке Р 0 нет;

если же D(Р 0) = 0, то также требуются дополнительные исследования функции в окрестности критической точки Р 0 .

Таким образом, для функции z = f (x , y ) двух переменных имеем следующий алгоритм (назовем его «алгоритмом D») отыскания экстремума:

1) Найти область определения D(f ) функции.

2) Найти критические точки, т.е. точки из D(f ), для которых и равны нулю или не существуют.

3) В каждой критической точке Р 0 проверить достаточные условия экстремума. Для этого найти , где , , и вычислить D(Р 0) и А (Р 0).Тогда:

если D(Р 0) >0 , то в точке Р 0 есть экстремум, причем, если А (Р 0) > 0 – то это минимум, а если А (Р 0) < 0 – максимум;

если D(Р 0) < 0, то в точке Р­ 0 нет экстремума;

Если D(Р 0) = 0, то нужны дополнительные исследования.

4) В найденных точках экстремума вычислить значение функции.

Пример1.

Найти экстремум функции z = x 3 + 8y 3 – 3xy .

Решение. Область определения этой функции – вся координатная плоскость. Найдем критические точки.

, , Þ Р 0 (0,0) , .

Проверим выполнение достаточных условий экстремума. Найдем

6х , = -3, = 48у и = 288ху­ – 9.

Тогда D(Р 0) = 288×0×0 – 9 = -9< 0 , значит, в точке Р 0 экстремума нет.

D(Р 1) = 36-9>0 – в точке Р 1 есть экстремум, а так как А (Р 1) = 3 >0, то этот экстремум – минимум. Значит, min z = z (P 1) = .

Пример 2.

Найти экстремум функции .

Решение: D(f ) =R 2 . Критические точки: ; не существует при у = 0, значит Р 0 (0,0) – критическая точка данной функции.

2, = 0, = , = , но D(Р 0) не определено, поэтому исследование его знака невозможно.

По этой же причине невозможно применить теорему 9.2 непосредственно – d 2 z в этой точке не существует.

Рассмотрим приращение функции f (x , y ) в точке Р 0 . Если Df =f (P) – f (P 0)>0 " Р, то Р 0 точка минимума, если же Df < 0, то Р 0 – точка максимума.

Имеем в нашем случае

Df = f (x , y ) – f (0, 0) = f (0+Dx ,0+Dy ) – f (0, 0) = .

При Dx = 0,1 и Dy = -0,008 получим Df = 0,01 – 0,2 < 0, а при Dx = 0,1 и Dy = 0,001 Df = 0,01 + 0,1 > 0, т.е. в окрестности точки Р 0 не выполняются ни условие Df <0 (т.е. f (x , y ) < f (0, 0) и значит, Р 0 – не точка максимума), ни условие Df >0 (т.е. f (x , y ) > f (0, 0) и тогда Р 0 – не точка минимума). Значит, по определению экстремума, данная функция экстремумов не имеет.

Условный экстремум.

Рассмотренный экстремум функции называют безусловным , так как на аргументы функции не налагаются никакие ограничения (условия).

Определение 9.2. Экстремум функции и = f (х 1 , х 2 , ... , х п ), найденный при условии, что ее аргументы х 1 , х 2 , ... , х п удовлетворяют уравнениям j 1 (х 1 , х 2 , ... , х п ) = 0, …, j т (х 1 , х 2 , ... , х п ) = 0, где P (х 1 , х 2 , ... , х п ) Î D(f ), называется условным экстремумом .

Уравнения j k (х 1 , х 2 , ... , х п ) = 0 , k = 1, 2,..., m , называются уравнениями связи .

Рассмотрим функции z = f (x , y ) двух переменных. Если уравнение связи одно, т.е. , то отыскание условного экстремума означает, что экстремум ищется не во всей области определения функции, а на некоторой кривой , лежащей в D(f ) (т.е. ищутся не самые высокие или самые низкие точки поверхности z = f (x , y ), а наиболее высокие или низкие точки среди точек пересечения этой поверхности с цилиндром , рис 5).


Условный экстремум функции z = f (x , y ) двух переменных можно найти следующим способом(метод исключения ). Из уравнения выразить одну из переменных как функцию другой (например, записать ) и, подставив это значение переменной в функцию , записать последнюю как функцию одной переменной (в рассмотренном случае ). Найти экстремум полученной функции одной переменной.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $\varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $\varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=\psi(x)$, то подставив $y=\psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=f\left(x,\psi(x)\right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+\lambda\varphi(x,y)$ (параметр $\lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

$$ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right. $$

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F < 0$, то условный максимум.

Есть и другой способ для определения характера экстремума. Из уравнения связи получаем: $\varphi_{x}^{"}dx+\varphi_{y}^{"}dy=0$, $dy=-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx$, поэтому в любой стационарной точке имеем:

$$d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=F_{xx}^{""}dx^2+2F_{xy}^{""}dx\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)+F_{yy}^{""}\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)^2=\\ =-\frac{dx^2}{\left(\varphi_{y}^{"} \right)^2}\cdot\left(-(\varphi_{y}^{"})^2 F_{xx}^{""}+2\varphi_{x}^{"}\varphi_{y}^{"}F_{xy}^{""}-(\varphi_{x}^{"})^2 F_{yy}^{""} \right)$$

Второй сомножитель (расположенный в скобке) можно представить в такой форме:

Красным цветом выделены элементы определителя $\left| \begin{array} {cc} F_{xx}^{""} & F_{xy}^{""} \\ F_{xy}^{""} & F_{yy}^{""} \end{array} \right|$, который является гессианом функции Лагранжа. Если $H > 0$, то $d^2F < 0$, что указывает на условный максимум. Аналогично, при $H < 0$ имеем $d^2F > 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показать\скрыть

$$ H=-\left|\begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right| $$

В этой ситуации сформулированное выше правило изменится следующим образом: если $H > 0$, то функция имеет условный минимум, а при $H < 0$ получим условный максимум функции $z=f(x,y)$. При решении задач следует учитывать такие нюансы.

Алгоритм исследования функции двух переменных на условный экстремум

  1. Составить функцию Лагранжа $F(x,y)=f(x,y)+\lambda\varphi(x,y)$
  2. Решить систему $ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right.$
  3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить любой из указанных способов:
    • Составить определитель $H$ и выяснить его знак
    • С учетом уравнения связи вычислить знак $d^2F$

Метод множителей Лагранжа для функций n переменных

Допустим, мы имеем функцию $n$ переменных $z=f(x_1,x_2,\ldots,x_n)$ и $m$ уравнений связи ($n > m$):

$$\varphi_1(x_1,x_2,\ldots,x_n)=0; \; \varphi_2(x_1,x_2,\ldots,x_n)=0,\ldots,\varphi_m(x_1,x_2,\ldots,x_n)=0.$$

Обозначив множители Лагранжа как $\lambda_1,\lambda_2,\ldots,\lambda_m$, составим функцию Лагранжа:

$$F(x_1,x_2,\ldots,x_n,\lambda_1,\lambda_2,\ldots,\lambda_m)=f+\lambda_1\varphi_1+\lambda_2\varphi_2+\ldots+\lambda_m\varphi_m$$

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

$$\left\{\begin{aligned} & \frac{\partial F}{\partial x_i}=0; (i=\overline{1,n})\\ & \varphi_j=0; (j=\overline{1,m}) \end{aligned} \right.$$

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F < 0$, - то условный максимум. Можно пойти иным путем, рассмотрев следующую матрицу:

Определитель матрицы $\left| \begin{array} {ccccc} \frac{\partial^2F}{\partial x_{1}^{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{1}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{2}\partial x_1} & \frac{\partial^2F}{\partial x_{2}^{2}} & \frac{\partial^2F}{\partial x_{2}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{2}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{3} \partial x_{1}} & \frac{\partial^2F}{\partial x_{3}\partial x_{2}} & \frac{\partial^2F}{\partial x_{3}^{2}} &\ldots & \frac{\partial^2F}{\partial x_{3}\partial x_{n}}\\ \ldots & \ldots & \ldots &\ldots & \ldots\\ \frac{\partial^2F}{\partial x_{n}\partial x_{1}} & \frac{\partial^2F}{\partial x_{n}\partial x_{2}} & \frac{\partial^2F}{\partial x_{n}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{n}^{2}}\\ \end{array} \right|$, выделенной в матрице $L$ красным цветом, есть гессиан функции Лагранжа. Используем следующее правило:

  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ матрицы $L$ совпадают с знаком $(-1)^m$, то исследуемая стационарная точка является точкой условного минимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.
  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ чередуются, причём знак минора $H_{2m+1}$ совпадает с знаком числа $(-1)^{m+1}$, то исследуемая стационарная точка является точкой условного максимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.

Пример №1

Найти условный экстремум функции $z(x,y)=x+3y$ при условии $x^2+y^2=10$.

Геометрическая интерпретация данной задачи такова: требуется найти наибольшее и наименьшее значение аппликаты плоскости $z=x+3y$ для точек ее пересечения с цилиндром $x^2+y^2=10$.

Выразить одну переменную через другую из уравнения связи и подставить ее в функцию $z(x,y)=x+3y$ несколько затруднительно, поэтому будем использовать метод Лагранжа.

Обозначив $\varphi(x,y)=x^2+y^2-10$, составим функцию Лагранжа:

$$ F(x,y)=z(x,y)+\lambda \varphi(x,y)=x+3y+\lambda(x^2+y^2-10);\\ \frac{\partial F}{\partial x}=1+2\lambda x; \frac{\partial F}{\partial y}=3+2\lambda y. $$

Запишем систему уравнений для определения стационарных точек функции Лагранжа:

$$ \left \{ \begin{aligned} & 1+2\lambda x=0;\\ & 3+2\lambda y=0;\\ & x^2+y^2-10=0. \end{aligned} \right. $$

Если предположить $\lambda=0$, то первое уравнение станет таким: $1=0$. Полученное противоречие говорит о том, что $\lambda\neq 0$. При условии $\lambda\neq 0$ из первого и второго уравнений имеем: $x=-\frac{1}{2\lambda}$, $y=-\frac{3}{2\lambda}$. Подставляя полученные значения в третье уравнение, получим:

$$ \left(-\frac{1}{2\lambda} \right)^2+\left(-\frac{3}{2\lambda} \right)^2-10=0;\\ \frac{1}{4\lambda^2}+\frac{9}{4\lambda^2}=10; \lambda^2=\frac{1}{4}; \left[ \begin{aligned} & \lambda_1=-\frac{1}{2};\\ & \lambda_2=\frac{1}{2}. \end{aligned} \right.\\ \begin{aligned} & \lambda_1=-\frac{1}{2}; \; x_1=-\frac{1}{2\lambda_1}=1; \; y_1=-\frac{3}{2\lambda_1}=3;\\ & \lambda_2=\frac{1}{2}; \; x_2=-\frac{1}{2\lambda_2}=-1; \; y_2=-\frac{3}{2\lambda_2}=-3.\end{aligned} $$

Итак, система имеет два решения: $x_1=1;\; y_1=3;\; \lambda_1=-\frac{1}{2}$ и $x_2=-1;\; y_2=-3;\; \lambda_2=\frac{1}{2}$. Выясним характер экстремума в каждой стационарной точке: $M_1(1;3)$ и $M_2(-1;-3)$. Для этого вычислим определитель $H$ в каждой из точек.

$$ \varphi_{x}^{"}=2x;\; \varphi_{y}^{"}=2y;\; F_{xx}^{""}=2\lambda;\; F_{xy}^{""}=0;\; F_{yy}^{""}=2\lambda.\\ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 2x & 2y\\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right| $$

В точке $M_1(1;3)$ получим: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & 1 & 3\\ 1 & -1/2 & 0 \\ 3 & 0 & -1/2 \end{array} \right|=40 > 0$, поэтому в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_{\max}=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & -1 & -3\\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end{array} \right|=-40$. Так как $H < 0$, то в точке $M_2(-1;-3)$ имеем условный минимум функции $z(x,y)=x+3y$, а именно: $z_{\min}=z(-1;-3)=-10$.

Отмечу, что вместо вычисления значения определителя $H$ в каждой точке, гораздо удобнее раскрыть его в общем виде. Дабы не загромождать текст подробностями, этот способ скрою под примечание.

Запись определителя $H$ в общем виде. показать\скрыть

$$ H=8\cdot\left|\begin{array}{ccc}0&x&y\\x&\lambda&0\\y&0&\lambda\end{array}\right| =8\cdot\left(-\lambda{y^2}-\lambda{x^2}\right) =-8\lambda\cdot\left(y^2+x^2\right). $$

В принципе, уже очевидно, какой знак имеет $H$. Так как ни одна из точек $M_1$ или $M_2$ не совпадает с началом координат, то $y^2+x^2>0$. Следовательно, знак $H$ противоположен знаку $\lambda$. Можно и довести вычисления до конца:

$$ \begin{aligned} &H(M_1)=-8\cdot\left(-\frac{1}{2}\right)\cdot\left(3^2+1^2\right)=40;\\ &H(M_2)=-8\cdot\frac{1}{2}\cdot\left((-3)^2+(-1)^2\right)=-40. \end{aligned} $$

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=2\lambda \left(dx^2+dy^2\right) $$

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $\left(dx \right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $\lambda_1=-\frac{1}{2}$ получим $d^2F < 0$. Следовательно, функция имеет в точке $M_1(1;3)$ условный максимум. Аналогично, в точке $M_2(-1;-3)$ получим условный минимум функции $z(x,y)=x+3y$. Отметим, что для определения знака $d^2F$ не пришлось учитывать связь между $dx$ и $dy$, ибо знак $d^2F$ очевиден без дополнительных преобразований. В следующем примере для определения знака $d^2F$ уже будет необходимо учесть связь между $dx$ и $dy$.

Ответ : в точке $(-1;-3)$ функция имеет условный минимум, $z_{\min}=-10$. В точке $(1;3)$ функция имеет условный максимум, $z_{\max}=10$

Пример №2

Найти условный экстремум функции $z(x,y)=3y^3+4x^2-xy$ при условии $x+y=0$.

Первый способ (метод множителей Лагранжа)

Обозначив $\varphi(x,y)=x+y$ составим функцию Лагранжа: $F(x,y)=z(x,y)+\lambda \varphi(x,y)=3y^3+4x^2-xy+\lambda(x+y)$.

$$ \frac{\partial F}{\partial x}=8x-y+\lambda; \; \frac{\partial F}{\partial y}=9y^2-x+\lambda.\\ \left \{ \begin{aligned} & 8x-y+\lambda=0;\\ & 9y^2-x+\lambda=0; \\ & x+y=0. \end{aligned} \right. $$

Решив систему, получим: $x_1=0$, $y_1=0$, $\lambda_1=0$ и $x_2=\frac{10}{9}$, $y_2=-\frac{10}{9}$, $\lambda_2=-10$. Имеем две стационарные точки: $M_1(0;0)$ и $M_2 \left(\frac{10}{9};-\frac{10}{9} \right)$. Выясним характер экстремума в каждой стационарной точке с использованием определителя $H$.

$$ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 1 & 1\\ 1 & 8 & -1 \\ 1 & -1 & 18y \end{array} \right|=-10-18y $$

В точке $M_1(0;0)$ $H=-10-18\cdot 0=-10 < 0$, поэтому $M_1(0;0)$ есть точка условного минимума функции $z(x,y)=3y^3+4x^2-xy$, $z_{\min}=0$. В точке $M_2\left(\frac{10}{9};-\frac{10}{9}\right)$ $H=10 > 0$, посему в данной точке функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=8dx^2-2dxdy+18ydy^2 $$

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

$$ d^2 F=8dx^2-2dxdy+18ydy^2=8dx^2-2dx(-dx)+18y(-dx)^2=(10+18y)dx^2 $$

Так как $ d^2F \Bigr|_{M_1}=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F \Bigr|_{M_2}=-10 dx^2 < 0$, т.е. $M_2\left(\frac{10}{9}; -\frac{10}{9} \right)$ - точка условного максимума.

Второй способ

Из уравнения связи $x+y=0$ получим: $y=-x$. Подставив $y=-x$ в функцию $z(x,y)=3y^3+4x^2-xy$, получим некоторую функцию переменной $x$. Обозначим эту функцию как $u(x)$:

$$ u(x)=z(x,-x)=3\cdot(-x)^3+4x^2-x\cdot(-x)=-3x^3+5x^2. $$

Таким образом задачу о нахождении условного экстремума функции двух переменных мы свели к задаче определения экстремума функции одной переменной.

$$ u_{x}^{"}=-9x^2+10x;\\ -9x^2+10x=0; \; x\cdot(-9x+10)=0;\\ x_1=0; \; y_1=-x_1=0;\\ x_2=\frac{10}{9}; \; y_2=-x_2=-\frac{10}{9}. $$

Получили точки $M_1(0;0)$ и $M_2\left(\frac{10}{9}; -\frac{10}{9}\right)$. Дальнейшее исследование известно из курса дифференциального исчисления функций одной переменой. Исследуя знак $u_{xx}^{""}$ в каждой стационарной точке или проверяя смену знака $u_{x}^{"}$ в найденных точках, получим те же выводы, что и при решении первым способом. Например, проверим знак $u_{xx}^{""}$:

$$u_{xx}^{""}=-18x+10;\\ u_{xx}^{""}(M_1)=10;\;u_{xx}^{""}(M_2)=-10.$$

Так как $u_{xx}^{""}(M_1)>0$, то $M_1$ - точка минимума функции $u(x)$, при этом $u_{\min}=u(0)=0$. Так как $u_{xx}^{""}(M_2)<0$, то $M_2$ - точка максимума функции $u(x)$, причём $u_{\max}=u\left(\frac{10}{9}\right)=\frac{500}{243}$.

Значения функции $u(x)$ при заданном условии связи совпадают с значениями функции $z(x,y)$, т.е. найденные экстремумы функции $u(x)$ и есть искомые условные экстремумы функции $z(x,y)$.

Ответ : в точке $(0;0)$ функция имеет условный минимум, $z_{\min}=0$. В точке $\left(\frac{10}{9}; -\frac{10}{9} \right)$ функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Рассмотрим еще один пример, в котором характер экстремума выясним посредством определения знака $d^2F$.

Пример №3

Найти наибольшее и наименьшее значения функции $z=5xy-4$, если переменные $x$ и $y$ положительны и удовлетворяют уравнению связи $\frac{x^2}{8}+\frac{y^2}{2}-1=0$.

Составим функцию Лагранжа: $F=5xy-4+\lambda \left(\frac{x^2}{8}+\frac{y^2}{2}-1 \right)$. Найдем стационарные точки функции Лагранжа:

$$ F_{x}^{"}=5y+\frac{\lambda x}{4}; \; F_{y}^{"}=5x+\lambda y.\\ \left \{ \begin{aligned} & 5y+\frac{\lambda x}{4}=0;\\ & 5x+\lambda y=0;\\ & \frac{x^2}{8}+\frac{y^2}{2}-1=0;\\ & x > 0; \; y > 0. \end{aligned} \right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; \; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $\lambda=-\frac{5x}{y}$ и подставим найденное значение в первое уравнение: $5y-\frac{5x}{y}\cdot \frac{x}{4}=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $\frac{4y^2}{8}+\frac{y^2}{2}-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $\lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

$$ F_{xx}^{""}=\frac{\lambda}{4}; \; F_{xy}^{""}=5; \; F_{yy}^{""}=\lambda. $$

Так как $\frac{x^2}{8}+\frac{y^2}{2}-1=0$, то:

$$ d\left(\frac{x^2}{8}+\frac{y^2}{2}-1\right)=0; \; d\left(\frac{x^2}{8} \right)+d\left(\frac{y^2}{2} \right)=0; \; \frac{x}{4}dx+ydy=0; \; dy=-\frac{xdx}{4y}. $$

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $\lambda=-10$, получив при этом:

$$ F_{xx}^{""}=\frac{-5}{2}; \; F_{xy}^{""}=-10; \; dy=-\frac{dx}{2}.\\ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=-\frac{5}{2}dx^2+10dx\cdot \left(-\frac{dx}{2} \right)-10\cdot \left(-\frac{dx}{2} \right)^2=\\ =-\frac{5}{2}dx^2-5dx^2-\frac{5}{2}dx^2=-10dx^2. $$

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=\frac{\lambda}{4}dx^2+10\cdot dx\cdot \frac{-xdx}{4y} +\lambda\cdot \left(-\frac{xdx}{4y} \right)^2=\\ =\frac{\lambda}{4}dx^2-\frac{5x}{2y}dx^2+\lambda \cdot \frac{x^2dx^2}{16y^2}=\left(\frac{\lambda}{4}-\frac{5x}{2y}+\frac{\lambda \cdot x^2}{16y^2} \right)\cdot dx^2 $$

Подставляя $x=2$, $y=1$, $\lambda=-10$, получим:

$$ d^2 F=\left(\frac{-10}{4}-\frac{10}{2}-\frac{10 \cdot 4}{16} \right)\cdot dx^2=-10dx^2. $$

Так как $d^2F=-10\cdot dx^2 < 0$, то точка $(2;1)$ есть точкой условного максимума функции $z=5xy-4$, причём $z_{\max}=10-4=6$.

Ответ : в точке $(2;1)$ функция имеет условный максимум, $z_{\max}=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.