Схема повторных независимых испытаний. Формула Бернулли

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«МАТИ»  РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. К.Э. ЦИОЛКОВСКОГО

Кафедра «Моделирование систем и информационные технологии»

Повторение испытаний. Схема бернулли

Методические указания к практическим занятиям

по дисциплине «Высшая математика»

Составители: Егорова Ю.Б.

Мамонов И.М.

Москва 2006 введение

Методические указания предназначены для студентов дневного и вечернего отделения факультета №14 специальностей 150601, 160301, 230102. Указания выделяют основные понятия темы, определяют последовательность изучения материала. Большое количество рассмотренных примеров помогает в практическом освоении темы. Методические указания служат методической основой для практических занятий и выполнения индивидуальных заданий.

    СХЕМА БЕРНУЛЛИ. ФОРМУЛА БЕРНУЛЛИ

Схема Бернулли - схема повторных независимых испытаний, при которой какое-то событие А может многократно повторяться с постоянной вероятностью Р (А )= р .

Примеры испытаний, проводимых по схеме Бернулли: многократное подбрасывание монеты или игральной кости, изготовление партии деталей, стрельба по мишени и т.п.

Теорема. Если вероятность наступления события А в каждом испытании постоянна и равна р , то вероятность того, что событие А наступит m раз в n испытаниях (безразлично в какой последовательности), можно определить по формуле Бернулли:

где q = 1 – p .

ПРИМЕР 1. Вероятность того, что расход электроэнергии на протяжении одних суток не превысит установленной нормы, равна р= 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

РЕШЕНИЕ. Вероятность нормального расхода элек­троэнергии на протяжении каждых из 6 суток постоянна и равна р = 0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q = 1р = 1  0,75 = 0,25.

Искомая вероятность по формуле Бернулли равна:

ПРИМЕР 2. Стрелок производит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна р= 0,3. Найти вероятность того, что поражена: а) одна мишень; б) все три мишени; в) ни одной мишени; г) хотя бы одна мишень; д) менее двух мишеней.

РЕШЕНИЕ. Вероятность попадания в мишень при каждом выстреле постоянна и равна р =0,75. Следовательно, вероятность промаха равна q = 1 р = 1  0,3= 0,7. Общее число проведенных опытов n =3.

а) Вероятность поражения одной мишени при трех выстрелах равна:

б) Вероятность поражения всех трех мишеней при трех выстрелах равна:

в) Вероятность трех промахов при трех выстрелах равна:

г) Вероятность поражения хотя бы одной мишени при трех выстрелах равна:

д) Вероятность поражения менее двух мишеней, то есть или одной мишени, или ни одной:

  1. Локальная и интегральная теоремы муавра-лапласа

Если произведено большое число испытаний, то вычисление вероятностей по формуле Бернулли становится технически сложным, так как формула требует действий над огромными числами. Поэтому существуют более простые приближенные формулы для вычисления вероятностей при больших n . Эти формулы называются асимптотическими и определяются теоремой Пуассона, локальной и интегральной теоремой Лапласа.

Локальная теорема Муавра-Лапласа. А А произойдет m раз в n n (n →∞ ), приближенно равна:

где функция
а аргумент

Чем больше n , тем точнее вычисление вероятностей. Поэтому теорему Муавра-Лапласа целесообразно применять при npq 20.

f ( x ) составлены специальные таблицы (см. приложение 1). При использовании таблицы необходимо иметь в виду свойства функции f(x) :

    Функция f(x) является четной f( x)= f(x) .

    При х  ∞ функция f(x)  0. Практически можно считать, что уже при х >4 функция f(x) ≈0.

ПРИМЕР 3. Найти вероятность того, что событие А наступит 80 раз в 400 испытаниях, если вероятность появления события А в каждом испытании равна р= 0,2.

РЕШЕНИЕ. По условию n =400, m =80, p =0,2, q =0,8. Следовательно:

По таблице определим значение функции f (0)=0,3989.

Интегральная теорема Муавра-Лапласа. Если вероятность наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А произойдет от m 1 до m 2 раз в n испытаниях при достаточно большом числе n (n →∞ ), приближенно равна:

где
 интеграл или функция Лапласа,

Для нахождения значений функции Ф( x ) составлены специальные таблицы (например, см. приложение 2). При использовании таблицы необходимо иметь в виду свойства функции Лапласа Ф(x) :

    Функция Ф(x) является нечетной Ф( x)= Ф(x) .

    При х  ∞ функция Ф(x)  0,5. Практически можно считать, что уже при х >5 функция Ф(x) ≈0,5.

    Ф (0)=0.

ПРИМЕР 4. Вероятность того, что деталь не прошла проверку ОТК, равна 0,2. Найти вероятность того, что среди 400 деталей окажется непроверенных от 70 до 100 деталей.

РЕШЕНИЕ. По условию n =400, m 1 =70, m 2 =100, p =0,2, q =0,8. Следовательно:


По таблице, в которой приведены значения функции Лапласа, определяем:

Ф(x 1 ) = Ф(  1,25 )= Ф( 1,25 )=  0,3944; Ф(x 2 ) = Ф( 2,5 )= 0,4938.

Практические задачи, связанные с оценкой вероятности наступления события в результате нескольких равноценных попыток могут анализироваться с применением формулы Бернулли или (при большом количестве таких попыток) с применением приближенной формулы Пуассона. Для работы с этим материалом Вам снова потребуется знание ..

Схема Бернулли состоит в следующем: производится последовательность испытаний, в каждом из которых вероятность наступления определенного события А одна и та же и равна р. Испытания предполагаются независимыми (т.е. считается, что вероятность появления события А в каждом из испытаний не зависит от того, появилось или не появилось это событие в других испытаниях). Наступление события А обычно называют успехом, а ненаступление - неудачей. Обозначим вероятность неудачи q=1-P(A)=(1-p). Вероятность того, что в n независимых испытаниях успех наступит ровно m раз, выражается формулой Бернулли :

Вероятность Р n (m) при данном n сначала увеличивается при увеличении m от 0 до некоторого значения m 0 , а затем уменьшается при изменении m от m 0 до n.

Поэтому m 0 , называют наивероятнейшим числом наступлений успеха в опытах. Это число m 0 , заключено между числами np-q и np+p (или, что то же самое, между числами n(p+1)-1 и n(p+1) ) .Если число np-q - целое число, то наивероятнейших чисел два: np-q и np+p.

Важное замечание. Если np-q< 0, то наивероятнейшее число выигрышей равно нулю.

Пример. Игральная кость бросается 4 раза. При каждом броске нас интересует событие А ={выпала шестерка}.

Решение: Здесь четыре испытания, и т.к. кубик симметричен, то

p=P(A)=1/6, q=1-p=5/6.

Вероятность того, что в 4 независимых испытаниях успех наступит ровно m раз (m < 4), выражается формулой Бернулли:


Посчитаем эти значения и запишем их в таблицу.

Самое вероятное число успехов в нашем случае m 0 =0.

Пример. Вероятность появления успеха равна 3/5. Найти наивероятнейшее число наступлений успеха, если число испытаний равно 19, 20.

Решение: при n =19 находим


Таким образом, максимальная вероятность достигается для двух значений m 0 , равных 11 и 12. Эта вероятность равна P 19 (11)=P 19 (12)=0,1797. При n=20 максимальная вероятность достигается только для одного значения m 0 , т.к.

Не является целым числом. Наивероятнейшее число наступлений успеха m 0 равно 12. Вероятность его появления равна P 20 (12)=0,1797. Совпадение чисел P 20 (12) и P 19 (12) вызвано лишь сочетанием значений n и p и не имеет общего характера.

На практике в случае, когда n велико, а p мало (обычно p < 0,1; npq < 10) вместо формулы Бернулли применяют приближенную формулу Пуассона


Пример 4. Радиоаппаратура состоит из 1000 элементов. Вероятность отказа одного элемента в течение года равна 0,002. Какова вероятность отказа двух элементов за год? Какова вероятность отказа не менее двух элементов за год?

Решение: будем рассматривать работу каждого элемента как отдельное испытание. Обозначим А ={отказ элемента за год}.

P(A)=p=0,002, l=np=1000*0,002=2


П о формуле Пуассона


Обозначим через P 1000 (> 2) вероятность отказа не менее двух элементов за год.
Переходя к противоположному событию, вычислим P 1000 (> 2) как.

(опять же согласно теореме 5.5) 48!(12!)4 способами. Следовательно, искомая вероятность равна

24 48!(13!) 4 = 2448!13 4 = 0,105... .

(12!)4 52! 52!

Любопытно, что при игре «в дурака» такая вероятность оказывается существенно меньше. Действительно, найдем вероятность того, что при раздачечетыремигрокампо6картизколодыв36карт,каждыйигрокполучит ровно по одному тузу. Поскольку раздается 24 карты из 36, то нам прежде всего надо знать число способов, которыми можно выбрать 24 карты из 36. Это число равно C 36 24 = 36!(24!12!) .

Далее, число способов, которыми можно разбить 24 карты на 4 группы по 6 карт согласно теореме 5.5 равно 24! (6!)4 . Таким образом, общее число способов, которыми можно раздать четырем игрокам по 6 карт из колоды в 36

карт, равно C 36 24 (6!) 24! 4 . Четыре туза могут быть распределены между четырьмя

игроками 4!= 24 способами. Число способов, которыми можно раздать четыремигрокампо5картизоставшихся32 карт, подсчитываетсяаналогично

предыдущему, и будет равно C 32 20 (5!) 20! 4 . Таким образом, искомая вероятность равна

24 C 20

32!12!64

(5!)4

≈ 0,022 .

(6!)4

§6. ИСПЫТАНИЯ БЕРНУЛЛИ. ФОРМУЛА ПУАССОНА

6.1. Схема независимых испытаний Бернулли

На практике часто встречается ситуация, хорошо иллюстрирующаяся

следующими примерами.

Некто несколько раз подряд бросает монету. Спрашивается, можно ли заранее оценить вероятность того, что в результате n бросаний герб выпадет ровноm раз? Или:n раз бросается игральная кость; требуется оценить вероятность того, что при этомm раз выпадет 5 или 6 очков.

Очевидно, что без дополнительных предположений относительно условий проведения эксперимента однозначно ответить на эти вопросы нельзя. Так, результат, несомненно, должен зависеть от того, является ли монета (или кость) правильной, т.е. однородной и симметричной. С другой стороны, возможно ли ответить на вопрос: сколько раз надо бросить монету (или кость), чтобы с достаточной степенью уверенности можно было утверждать, что данная монета (или кость) не является правильной ? Умение отвечать на такой вопрос весьма важно, например, для игорных заведений.

Естественно предположить, что если монета правильная, то вероятность появления герба при каждом бросании равна ½ . Аналогично, в случае правильной кости вероятность появления 5 или 6 очков при каждом бросании равна⅓ . Иными словами, если испытаний достаточно много, то герб при бросании монеты будет появляться примерно в половине исходов, а 5 или 6 очков на кости – в одной трети случаев.

Однако всеэти рассуждения основаны на интуиции. Мы жепостараемся в этом параграфе описать теоретическую модель, которая позволит нам вполне обоснованно ответить на все сформулированные выше вопросы. Модель, о которой пойдет речь ниже, впервые была предложена швейцарским математиком Якобом Бернулли (1654 1705), и получила его имя37 .

Схема независимых испытаний Бернулли. Будем производить последовательные испытания, в результате каждого из которых может

37 Основные результаты Я. Бернулли по теории вероятностей были опубликованы лишь после его смерти в 1713 г. Брат Я. Бернулли – Иоганн (1667-1748) и сын – Даниил (1700-1782) являлись членами Петербургской Императорской Академии Наук, и внесли большой вклад в развитие вариационного исчисления и теоретической механики.

наступить или не наступить некоторое событие А . Пусть при каждом отдельном испытании вероятность наступления событияА одна и та же и не зависит от наступления или ненаступления этого события при других испытаниях; обозначим эту вероятность черезp . Обычно говорят, чтоp – это вероятность «успеха»; соответственно величинаq = 1− p называется вероятностью «неудачи». Понятно, что эта терминология весьма условна.

Такая модель называется схемой (независимых) испытаний Бернулли.

Зададимся следующим вопросом: какова вероятность того, что при проведении n испытаний «успех» (т.е. появления событияА ) будет наблюдаться ровно вm случаях?38

Эта задача решается следующим образом. Представим себе все возможные комбинации из последовательных результатов наших испытаний. Так, например, в случае 3 испытаний возможны восемь таких комбинаций39 , а именно:

AAA; AAA; AAA; AAA;

AAA; AAA; AAA; AAA.

Выделим те комбинации, в которых событие А наступает ровноm раз (и, следовательно, не наступает ровноn ─ m раз); назовем для краткости такие комбинациидопустимыми . Определим вероятность появления каждой отдельной допустимой комбинации. Для этого заметим, что появление допустимой комбинации представляет собой произведениеn событий, а именно:m наступлений событияА при одних испытаниях иn ─ m его ненаступлений при других испытаниях. Вероятность наступления событияА при каждом отдельном испытании по условию равнаp ; вероятность его ненаступления равна, следовательно,q = 1− p . По условию наступления или ненаступления событияА при различных испытаниях представляют собой независимые события; следовательно, вероятность их произведения равна

38 Здесь естественно считать, что m = 0, 1, 2, …,n .

39 Здесь A означает событие, противоположное событиюА , т.е. «неудачу».

произведению их вероятностей, т. е. равна величине p m q n − m = p m (1− p )n − m . Заметимтеперь, чтособытие, состоящеевнаступлениисобытияА ровно

при m испытаниях, равносильно появлению хотя бы одной из допустимых комбинаций. Так как различные допустимые комбинации представляют собой несовместимые события, искомая вероятность появления событияА ровно вm испытаниях равна сумме вероятностей появления допустимых комбинаций. Поскольку вероятности появления допустимых комбинаций одинаковы, то вероятность их суммы равна величинеKp m q n − m , гдеK – число всех допустимых комбинаций. Это число равно, очевидно, числу различных способов, которыми можно выделитьm мест из общего числаn мест, иными

словами равно

числу сочетаний из n элементов поm , т.е. равно

C n m= C n n− m=

m!(n− m)!

Таким образом, вероятность появления ровно m «успехов» в последовательностиn независимых испытаний Бернулли равна

распределением Бернулли , определяется формулой (6.1) и дает значение вероятностиm «успехов» вn испытаниях Бернулли с вероятностью «успеха»p . При фиксированныхn иp она является функцией целочисленного неотрицательного аргументаm .

Испытания Бернулли – теоретическая схема, и только практика может показать, годна ли схема для описания данного физического опыта. Однако такая ситуация, как мы видели ранее, вполне естественна при построении вероятностных моделей. При всем этом во многих практических ситуациях использование схемы Бернулли оказывается вполне оправданным.

Приведем следующий поучительный пример . Американский ученый Уэлдон провел 26 306 серий испытаний по 12 бросаний одной и той же

игральной кости в каждой серии, вычисляя частоту появления события («успеха»), состоящего в выпадении на кости 5 или 6 очков. Результаты его опытов приведены в табл. 6.1.

Если кость считать правильной, то вероятность «успеха» должна быть равна ⅓ . Соответствующие теоретические значения функцииb (k ;12,13) даны во второй колонке. Эксперимент показал, однако, довольно существенное отличие от теоретических значений приp =⅓ , но хорошее согласование с теоретическими значениями функцииb (k ;12, 0.3377) дляp = 0.3377 . Этот результат естественно интерпретировать в том смысле, что игральная кость, использованная в эксперименте,не является правильной .

Это замечание имеет весьма важные практические приложения в вопросах, связанных с контролем за выполнением определенных нормативов (например, в производстве). В связи с этим рассмотрим следующий пример.

Таблица 6.1

Экспериментальная

Задача о снабжении энергией . Допустим, чтоn рабочих время от

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обозначим эти вероятности как p и q . Исход с вероятностью p будем называть “успехом”, а исход с вероятностью q – “неудачей”.

Очевидно, что

Пространство элементарных событий для каждого испытания состоит из двух точек. Пространство элементарных событий для n испытаний Бернулли содержит точек, каждая из которых представляет один возможный исход составного опыта. Поскольку испытания независимы, то вероятность последовательности событий равна произведению вероятностей соответствующих исходов. Например, вероятность последовательности событий

{У, У, Н, У, Н, Н, Н}

равна произведению

Примеры испытаний Бернулли.

1. Последовательные бросания “правильной” монеты. В этом случае p = q = 1/2 .

При бросании несимметричной монеты соответствующие вероятности изменят свои значения.

2. Каждый результат опыта можно рассматривать как A или .

3. Если существует несколько возможных исходов, то из них можно выделить группу исходов, которые рассматриваются как “успех”, называя все прочие исходы “неудачей”.

Например, при последовательных бросаниях игральной кости под “успехом” можно понимать выпадение 5, а под “неудачей” – выпадение любого другого числа очков. В этом случае p = 1/6, q = 5/6.

Если же под “успехом” понимать выпадение четного, а под “неудачей” – нечетного числа очков, то p = q = 1/2 .

4. Повторные случайные извлечения шара из урны, содержащей при каждом испытании a белых и b черных шаров. Если под успехом понимать извлечение белого шара, то , .

Феллер приводит следующий пример практического применения схемы испытаний Бернулли. Шайбы, изготовляемые при массовом производстве, могут отличаться по толщине, но при проверке они классифицируются на годные и дефектные – в зависимости от того, находится ли толщина в предписанных границах. И хотя продукция по многим причинам не может вполне соответствовать схеме Бернулли, эта схема задает идеальный стандарт для промышленного контроля качества продукции, несмотря даже на то, что этот стандарт никогда не достигается вполне точно. Машины подвержены изменениям, и поэтому вероятности не остаются одними и теми же; в режиме работы машин имеется некоторое постоянство, в результате чего длинные серии одинаковых отклонений оказываются более вероятными, чем это было бы при действительной независимости испытаний. Однако с точки зрения контроля качества продукции желательно, чтобы процесс соответствовал схеме Бернулли, и важно то, что в некоторых пределах этого можно добиться. Целью текущего контроля является обнаружение уже на ранней стадии существенных отступлений от идеальной схемы и использование их как указаний на угрожающее нарушение правильности работы машины.