Уравнения высших порядков примеры решения. Линейные дифференциальные уравнения высших порядков

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Теорию вычислений неоднородных дифференциальных уравнений (ДУ) приводить в данной публикации не будем, из предыдущих уроков Вы можете найти достаточно информации, чтобы найти ответ на вопрос "Как решить неоднородное дифференциальное уравнение?" Степень неоднородного ДУ здесь большой роли не играет, не так уж и много имеется способов, которые позволяют вычислить решение подобных ДУ. Чтобы Вам было легко читать ответы в примерах основной акцент сделан только на методику вычислений и подсказки, которые облегчат вывод конечной функции.

Пример 1. Решить дифференциальное уравнение
Решение: Задано однородное дифференциальное уравнение третьего порядка, причем оно содержит лишь вторую и третью производные и не имеет функции и ее первой производной. В таких случаях применяют метод понижения степени дифференциального уравнения. Для этого вводят параметр - обозначим вторую производную через параметр p

тогда третья производная функции равна

Исходное однородное ДУ упростится к виду

Записываем его в дифференциалах, далее сводим к уравнению с разделенными переменными и находим решение интегрированием

Вспоминаем что параметр это вторая производная функции

поэтому для нахождения формулы самой функции дважды интегрируем найденную дифференциальную зависимость

В функции сталые C 1 , C 2 , C 3 – равны произвольным значениям.
Вот так просто выглядит схема позволяющая найти общее решение однородного дифференциального уравнения методом введения параметра. Следующие задачи более сложные и из них вы научитесь решать неоднородные дифференциальные уравнения третьего порядка. Между однородными и неоднородными ДУ в плане вычислений является некоторое различие, в этом Вы сейчас убедитесь.

Пример 2. Найти
Решение: Имеем третьего порядка. Поэтому его решение следует искать в вид суммы двух - решения однородного и частного решения неоднородного уравнения

Решим сначала

Как видите оно содержит только вторую и третью производную функции и не содержит самой функции. Такого сорта диф. уравнения решают методом введения параметра, что в в свою очередь снижает и упрощает нахождение решения уравнения. На практике это выглядит следующим образом: пусть вторая производная равна определенной функции , тогда третья производная формально будет иметь запись

Рассмотренное однородное ДУ 3 порядка преобразуется к уравнению первого порядка

откуда разделяя переменные находим интеграл
x*dp-p*dx=0;

Сталые в таких задачах рекомендуем нумеровать, поскольку решение дифференциального уравнения 3 порядка имеет 3 постоянные, четвертого - 4 и и дальше по аналогии. Теперь возвращаемся к введенному параметру: поскольку вторая производная имеет вид то интегрируя ее один раз мы имеем зависимость для производной функции

и повторным интегрированием находим общий вид однородной функции

Частичное решение уравнения запишем в виде переменной умноженной на логарифм. Это следует из того что правая (неоднородная) часть ДУ равна -1/x и чтобы получить эквивалентную запись

следует решение искать в виде

Найдем коэффициент A , для этого вычислим производные первого и второго порядков

Подставим найденные выражения в исходное дифференциальное уравнение и приравняем коэффициенты при одинаковых степенях x:

Сталая равна -1/2 , а имеет вид

Общее решение дифференциального уравнения записываем в виде суммы найденных

где C 1 , C 2 , C 3 - произвольные константы которые можно уточнить с задачи Коши.

Пример 3. Найти интеграл ДУ третьего порядка
Решение: Ищем общий интеграл неоднородного ДУ третьего порядка в виде суммы решения однородного и частичного неоднородного уравнения . Сначала для любого типа уравнений начинаем анализировать однородное дифференциальное уравнение

Оно содержит только вторую и третью производные неизвестной пока функции. Вводим замену переменных (параметр): обозначим за вторую производную

Тогда третья производная равна

Такие же преобразования выполняли в предыдущем задании. Это позволяет свести дифференциальное уравнения третьего порядка к уравнению первого порядка вида

Интегрированием находим

Вспоминаем, что в соответствии с заменой переменных это всего лишь вторая производная

а чтобы найти решение однородного дифференциального уравнения третьего порядка ее нужно дважды проинтегрировать

Исходя из вида правой стороны (неоднородной части =x+1 ), частичное решение уравнения ищем в виде

Как знать в каком виде искать частичный решение Вас должны были научить в теоретической части курса дифференциальных уравнений. Если нет, то можем только подсказать, что за функцию выбирают такое выражение чтобы при подстановке в уравнение слагаемое, содержащее старшую производную или моложе был одного порядка (подобный) с неоднородной частью уравнения

Думаю теперь Вам понятнее, откуда берется вид частного решения. Найдем коэффициенты A, B, для этого вычисляем вторую и третью производную функции

и подставляем в дифференциальное уравнение. После группировки подобных слагаемых получим линейное уравнение

из которого при одинаковых степенях переменной составляем систему уравнений

и находим неизвестные сталые. После их подстановки выражается зависимостью

Общее решение дифференциального уравнения равно сумме однородного и частичного и имеет вид

где С 1 , С 2 , С 3 - произвольные константы.

Пример 4. Решить дифференциальное уравнение
Решение: Имеем решение которого будем находить через сумму . Схема вычислений Вам известна, поэтому переходим к рассмотрению однородного дифференциального уравнения

По стандартной методике вводим параметр
Исходное дифференциальное уравнение примет вид , откуда разделив переменные находим

Вспоминаем что параметр равен второй производной
Интегрируя ДУ получим первую производную функции

Повторным интегрированием находим общий интеграл однородного дифференциального уравнения

Частичное решение уравнения ищем в виде , так как правая часть равна
Найдем коэффициент A - для этого подставим y* в дифференциальное уравнение и приравняем коэффициент при одинаковых степенях переменной

После подстановки и группировки слагаемых получим зависимость

из которой сталая равна A=8/3.
Таким образом, можем записать частичное решение ДУ

Общее решение дифференциального уравнения равно сумме найденных

где С 1 , С 2 , С 3 - произвольные константы. Если заданно условие Коши, то их очень легко можем доопределить.

Считаю, что материал Вам пригодится при подготовке к практическим занятиям, модулям или контрольной работе. Здесь не разбирали задачу Коши, однако из предыдущих уроков Вы в целом знаете как это сделать.

Дифференциальные уравнения второго порядка и высших порядков.
Линейные ДУ второго порядка с постоянными коэффициентами.
Примеры решений.

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений . Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка .

У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка . А местами – даже проще, поскольку в решениях активно используется материал школьной программы.

Наиболее популярны дифференциальные уравнения второго порядка . В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка . Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами . Которые мы начнем рассматривать прямо сейчас.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение .

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение .

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

То есть, общее решение в любом случае существует . Потому что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим:

Линейные однородные уравнения высших порядков

Всё очень и очень похоже.

Линейное однородное уравнение третьего порядка имеет следующий вид:
, где – константы.
Для данного уравнения тоже нужно составить характеристическое уравнение и найти его корни. Характеристическое уравнение, как многие догадались, выглядит так:
, и оно в любом случае имеет ровно три корня.

Пусть, например, все корни действительны и различны: , тогда общее решение запишется следующим образом:

Если один корень действительный , а два других – сопряженные комплексные , то общее решение записываем так:

Особый случай, когда все три корня кратны (одинаковы). Рассмотрим простейшие однородное ДУ 3-го порядка с одиноким папашей: . Характеристическое уравнение имеет три совпавших нулевых корня . Общее решение записываем так:

Если характеристическое уравнение имеет, например, три кратных корня , то общее решение, соответственно, такое:

Пример 9

Решить однородное дифференциальное уравнение третьего порядка

Решение: Составим и решим характеристическое уравнение:

, – получен один действительный корень и два сопряженных комплексных корня.

Ответ: общее решение

Аналогично можно рассмотреть линейное однородное уравнение четвертого порядка с постоянными коэффициентами: , где – константы.

Уравнение вида: называется линейным дифференциальным уравнением высшего порядка, гдеa 0 ,а 1 ,…а n -функции переменной х или константы, причём a 0 ,а 1 ,…а n и f(x) считаются непрерывными.

Если a 0 =1(если
то на него можно разделить)
уравнение примет вид:

Если
уравнение неоднородное.

уравнение однородное.

Линейные однородные дифференциальные уравнения порядка n

Уравнение вида: называются линейными однородными дифференциальными уравнениями порядкаn.

Для этих уравнений справедливы следующие теоремы:

Теорема 1: Если
- решение , то сумма
- тоже решение

Доказательство: подставим сумму в

Т.к производная любого порядка от суммы равна суме производных, то можно перегруппироватся, раскрыв скобки:

т.к y 1 и y 2 – решение.

0=0(верно)
сумма тоже решение.

теорема доказана.

Теорема 2: Если y 0 -решение , то
- тоже решение.

Доказательство: Подставим
в уравнение

т.к С выносится за знак производной, то

т.к решение, 0=0(верно)
Сy 0 -тоже решение.

теорема доказана.

Следствие из Т1 и Т2: если
- решения (*)
линейеая комбинация-тоже решение (*).

Линейно независимые и линейно зависимые системы функций. Определитель Вронского и его свойства

Определение: Система функций
- называется линейно независимой, если линейная комбинациякоэффициенты
.

Определение: Систему функций
- называют линейно зависимой, еслии есть коэффициенты
.

Возьмём систему двух линейно зависимых функций
т.к
или
- условие линейной независимости двух функций.

1)
линейно независимы

2)
линейно зависимы

3)линейно зависимы

Определение: Дана система функций
- функций переменной х.

Определитель
-определитель Вронского для системы функций
.

Для системы двух функций определитель Вронского выглядит следующим образом:

Свойства определителя Вронского:


Теорема: Об общем решении линейного однородного дифференциального уравнения 2 порядка.

Если y 1 и y 2 – линейно независимые решения линейного однородного дифференциального уравнения 2 порядка, то

общее решение имеет вид:

Доказательство:
- решение по следствию из Т1 и Т2.

Если даны начальные условия то идолжны находится однозначно.

- начальные условия.

Составим систему для нахождения и. Для этого подставим начальные условия в общее решение.

определитель этой системы:
- определитель Вронского, вычисленный в точке х 0

т.к илинейно независимы
(по 2 0)

т.к определитель системы не равен 0, то система имеет единственное решение и инаходятся из системы однозначно.

Общее решение линейного однородного дифференциального уравнения порядка n

Можно показать что уравнение имеет n линейно независимых решений

Определение: n линейно независимых решений
линейного однородного дифференциального уравнения порядкаn называется фундаментальной системой решения.

Общее решение линейного однородного дифференциального уравнения порядкаn , т.е (*) – линейная комбинация фундаментальной системы решений:

Где
- фундаментальная система решения.

Линейные однородные дифференциальные уравнения 2 порядка с постоянными коэффициентами

Это уравнения вида:
, гдеp и g – числа(*)

Определение: Уравнение
- называетсяхарактеристическим уравнением дифференциального уравнения (*) – обычное квадратное уравнение, решение которого зависит от D, возможны следующие случаи:

1)D>0
- два действительных различных решения.

2)D=0
- один действительный корень кратности 2.

3)D<0
- два комплексно сопряжённых корня.

Для каждого из этих случаев укажем фундаментальную систему решений, составленную из 2 функций и.

Будем показывать что:

1) и- ЛНЗ

2) и- решение (*)

Рассмотрим 1 случай D>0
- 2 действительных различных корня.

Х
арактеристическое уравнение:

В качестве ФСР возьмём:

а) покажем ЛНЗ

б) покажем, что - решение (*), подставим



+p
+g
=0

верное равенство

решение (*)

аналогично показывается для y 2 .

Вывод:
- ФСР (*)
общее решение

Рассмотрим 2случай: D=0
- 1 действительный корень кратности 2.

В качестве ФСР возьмём:

ЛНЗ:
ЛНЗ есть.

-решение уравнения (см. 1 случай). Покажем что
- решение.

подставим в ДУ

-решение.

Вывод: ФСР

Пример:

3 случай : D<0
- 2 комплексно сопряжённых корня.

подставим
в характ. уравнение

комплексное число равно 0, когда действительная и мнимая часть равны 0.

- будем использовать.

Покажем, что
- образуют ФСР.

А)ЛНЗ:

Б)
-решение ДУ

верное равенство
- решение ДУ.

Аналогично показывается, что тоже решение.

Вывод: ФСР:

Общее решение:

Если заданы н.у.

- то сначала находят общее решение
, его производную:
, а потом в эту систему подставляют н.у и находяти.

Н.у: