Задачи по гидравлике разные. Давление

Рухленко А.П.

ГИДРАВЛИКА

Примеры решения задач

Учебно-методическое пособие

Для подготовки бакалавров по направлению

Агроинженерия

Тюмень – 2012

Рецензент:

кандидат технических наук, доцент А. Е. Королев.

Г 46 Рухленко А. П. Гидравлика. Примеры решения задач ТюмГСХА. - Тюмень, 2012.

Приведены примеры решения задач по всем основным разделам дисциплины. Пособие содержит 57 задач с подробным пояснением решения каждой.

Назначение данного пособия- помочь студентам в самостоятельном изучении и усвоении методики решения задач по всем темам курса.

Печатается по решению методической комиссии Механико-технологического института ТГСХА.

© Тюменская Государственная

Сельскохозяйственная академия.

© А. П. Рухленко, 2012.

Предисловие

Важным условием усвоения студентами теоретического курса является умение использовать знания теоретических основ при решении конкретных инженерных задач. Именно решение задач развивает у студентов навыки к творческому инженерному мышлению, способствует развитию самостоятельности при решении инженерных вопросов, связанных с изучением этой дисциплины.

Все задачи в данном пособии размещены в порядке изучения дисциплины по тематикам, согласно рабочим программам по подготовке бакалавров направления 110800- агроинженерия.

Пособие предназначено для студентов очной и заочной формы обучения. Цель его – помочь студентам освоить методику решения задач по темам курса «Гидравлика». Особенно полезно, по мнению автора, пособие будет для студентов, пропускающих занятия, ибо оно поможет им в освоении данной дисциплины.

В таблице, приведенной ниже, указываются номера задач по каждой теме и литература для изучения теоретического материала по каждой теме.

Тематика практических занятий

по решению задач

Тема занятия №№ задач по теме Литература, стр. №
Физичес-кие свойства жидкостей 1,2 8..13 8..14 7..12 3..4 3…4
Гидроста-тическое давление 3,4,5,6,7,8, 20..25 19..25 17..20 5..7 7..8
Сила гидростати-ческого давления на плоские и криволи-нейные поверх-ности 9,10,11,12,13,14, 15,16,17,19,21 25..31 28..34 21..27 7..9 15..16
Уравнение Бернулли. Гидравли-ческие сопротив-ления 22,23,24,25,26,27 28,29,30,31,32 42..45 55..64 46..52 52..78 44..59 13..16 19..24 30..36
Истечение жидкости через отверстия, насадки, дроссели и клапаны 34,35,36,37,38,39, 40,41 72..79 78..89 63..76 25..29 45..48
Гидравли-ческий расчет трубопро-водов 42,43,44 64..70 94..104 76..99 31..38 57..63
Лопастные насосы 45,46,47,48 89..108 131..134 139..158 163..173 146..161 41..59 78..83
Объемные гидрома-шины 50,51,52,53 141..169 177..204 223..235 59..76 88..91
Объемный гидропри-вод 54,55,56,57 192..200 204..224 271..279 77..84 95..98


Литература для изучения теоретической части дисциплины

1. Исаев А.П., Сергеев Б.И., Дидур В.А. Гидравлика и гидромеханизация сельскохозяйственных процессов М:Агропром издат, 1990 – 400с.

2. Н.А.Палишкин Гидравлика и сельскохозяйственное водоснабжение М: Агропром издат, 1990 - 351с.



3. Сабащвили Р.Г. Гидравлика, гидравлические машины, водоснабжение сельского хозяйства: Учеб. пособие для вузов М: Колос 1997-479с.

4. Рухленко А.П. Гидравлика и гидравлические машины. Учебное пособие ТГСХА-Тюмень 2006 г. 124с.

1. Определить объемный модуль упругости жидкости,

если под действием груза А массой 250 кг поршень прошел расстояние △h=5мм. Начальная высота положения поршня H=1.5м, диаметры поршня d=80мм и резервуара D=300мм, высота резервуара h=1,3 м. Весом поршня пренебречь. Резервуар считать абсолютно жестким.

Решение: Сжимаемость жидкости характеризуется модулем объемной упругости Е, входящим в обобщенный закон Гука: = ,

где = приращение (в данном случае уменьшение) объема жидкости V , обусловленное увеличением давления ∆р. Вышеприведенную зависимость запишем относительно искомой величины:

В правой части уравнения неизвестные величины необходимо выразить через исходные данные. Повышение давления ∆робусловленное внешней нагрузкой, а именно весом груза:

Начальный объем жидкости складывается из объемов жидкости в цилиндре и резервуаре:
= · .

Абсолютное изменение объема жидкости ∆V:

Подставив в правую часть уравнения полученные выражения для ∆р, ∆V и V получим

E = =

= = .

2. Высота цилиндрического вертикального резервуара h=10м, его диаметр D=3м. Определить массу мазута (ρ м =920кг/ ), которую можно налить в резервуар при 15 , если его температура может подняться до 40 0 С. Расширением стенок резервуара пренебречь, температурный коэффициент объемного расширения жидкости β t =0,0008 1/ 0 С.

Решение: Массу мазута можно выразить как произведение его плотности на объем, т. е.:

или ,

где h м - начальный уровень мазута в резервуаре при t=15 0 С. Из выражения для β t находим абсолютное изменение объема мазута при повышении температуры, т.е.:

.

С другой стороны, эту же величину можно представить как разность объемов резервуара и начального объема мазута:

Выразив эти объемы через геометрические параметры можно записать, что:

ΔV = ·

Приравняем правые части выражений для :

.

Сократив левую и правую части уравнения на , получим

Откуда = .

Полученное значение подставим в исходное уравнение

Здесь: △t = t k - t н = 40 – 15 = 25 0 С.

3. Определить абсолютное давление воздуха в баке , если при атмосферном давлении, соответствующем h a = =760 мм рт. ст. показание ртутного вакуумметра = 0,2 м, высота h = 1,5 м. Каково при этом показание пружинного вакуумметра? Плотность ртути ρ = 13600кг/ .

Решение: Для решения этой задачи используем основное уравнение гидростатики, позволяющее определить давление в любой точке жидкости и понятие «поверхность равного давления». Как известно, для неподвижной ньютоновской жидкости поверхности равного давления представляют совокупность горизонтальных плоскостей. В данном случае в качестве поверхностей равного давления возьмем две горизонтальные плоскости - поверхность раздела воды и воздуха в соединительной трубке и поверхность раздела воздуха и ртути в правом колене ртутного вакуумметра. Для первой поверхности давление в точках А и В одинаково и согласно основного уравнения гидростатики определяется следующим образом:

p А = p В = p 1 + ρ · g · h ,

где р 1 - абсолютное давление воздуха в баке. Из этого уравнения следует, что:

p 1 = p A - ρ · g · h.

Если не учитывать плотность воздуха, то можно записать что p А = p В = p Е, т.е. давления в точках А,В, и Е одинаковы.

Для второй поверхности давления в точках С и Д одинаковы и равны атмосферному,

р а = р С = р Д.

С другой стороны, давление в т. С можно представить как

откуда p е = p а – ρ рт ·g · h рт.

Подставив выражения для р А в уравнение для определения р 1 , получим

р 1 = p a - ρ рт · g · h рт – ρ · g · h = ρ рт · g · (h a - h рт) – ρ · g · h.

Численную величину р 1 найдем, подставив численные значения величин в правой части уравнения:

р 1 = 13600 · 9,81 · (0,76 – 0,2) – 1000 · 9,81 · 1,5=

74713 – 14715 = 59998Па = 60кПа.

Разрежение, которое будет показывать вакуумметр:

р вак = р а – р 1 = ρ рт · g · h а – р 1 =

13600 · 9,81 · 0,76 · 10 -3 - 60 = 101,4 – 60 = 41,4кПа.

4.Определить абсолютное давление в сосуде по показанию жидкостного манометра, если известно: h 1 =2м, h 2 =0,5м, h 3 =0,2м, м = = 880кг/м 3 .

Решение : Для решения этой задачи необходимо записать основное уравнение гидростатики для двух точек, распложенных на горизонтальной плоскости (поверхности равного давления), проходящей по линии раздела воды и ртути. Давление в т. А

р А = р абс + ρ · g · h 1 ;

Давление в т. В

Приравняв правые части этих выражений определим абсолютное давление

р абс + ρ · g · h 1 = р а + ρ м · g · h 3 + ρ рт · g · h 2 ,

100000+880·9,81·0,2+13600·9,81·0,5–1000·9,81·2 =

100000+1726,6+66708-19620=148815Па=148кПа.

5. Закрытый резервуар А, заполненный керосином на глубину Н=3м, снабжен вакуумметром и пьезометром. Определить абсолютное давление р 0 над свободной поверхностью в резервуаре и разность уровней ртути в вакуумметре h 1 если высота поднятия керосина в пьезометре h =1,5м.

Решение: Запишем основное уравнение гидростатики для т. А, расположенной на дне резервуара,

С другой стороны, это же давление в точке А можно выразить через показание открытого пьезометра

Полученное выражение для р А вставим в уравнение для определения р 0:

тогда численное значение р 0 будет равно:

Разность уровней ртути в вакууметре определим, записав основное уравнение гидростатики для двух точек В и С поверхности равного давления, совпадающей со свободной поверхностью ртути в правом колене вакуумметра

h 1 = = .

6. Определить избыточное давление воды в трубе В, если показание манометра =0,025МПа.

Соединительная трубка заполненная водой и

воздухом, как показано на схеме, причем Н 1 = 0,5м, Н 2 =3м. Как изменится показание манометра, если при том же давлении в трубе всю соединительную трубку заполнить водой (воздух выпустить через кран К). Высота

Решение: При решении этой задачи используется основное уравнение гидростатики, согласно которому, давление в трубе В, складывается из давления на свободной поверхности (в данном случае манометрического - р м) и весового давления воды. Воздух в расчет не принимается ввиду его малой, сравнительной с водой, плотности.

Итак давление в трубе В:

Здесь 1 взято со знаком минус, потому что этот столб воды способствует уменьшению давления в трубе.

Если из соединительной трубки полностью удалить воздух, то в этом случае основное уравнение гидростатики запишется так:

Точное значение ответов: и получается при g = 10 м/ .

7. При перекрытом кране трубопровода К определить абсолютное давление в резервуаре, зарытом на глубине Н=5м, если показание вакуумметра, установленного на высоте h=1.7м, . Атмосферное давление соответствует Плотность бензина .

Решение: Согласно основному уравнению гидростатики абсолютное давление в резервуаре будет складываться из абсолютного давления на свободной поверхности и весового, т. е.

Абсолютное давление на свободной поверхности :

или

С учетом полученного выражения для
исходное уравнение запишем следующим образом:

8. В цилиндрический бак диаметром D = 2м до уровня Н=1,5м налиты вода и бензин. Уровень воды в пьезометре ниже уровня бензина на h=300мм. Определить вес находящегося в баке

бензина, если .

Решение: Вес находящегося в баке бензина можно записать как

,

где - объем бензина в баке. Выразим его через геометрические параметры бака:

.

Чтобы определить неизвестную величину - уровень бензина в баке, нужно записать основное уравнение гидростатики для поверхности равного давления, в качестве которой наиболее целеобразно принять дно бака, так как относительно его мы располагаем информацией в виде Н- суммарного уровня бензина и воды в баке. Так как бак и пьезометр открыты (сообщаются с атмосферой), давление на дно будем учитывать только весовое.

Итак, давление на дно со стороны бака можно записать как

Это же давление со стороны пьезометра:

.

Приравняв правые части полученных выражений, выразим из них искомую величину :

Сократим полученное уравнение на g, убрав в обеих частях уравнения , запишем искомую величину

Из последнего уравнения

Полученные выражения для и подставим в исходное уравение и определим вес бензина

9. Гидравлический домкрат состоит из неподвижного поршня 1 и скользящего по нему цилиндра 2, на котором смонтирован корпус 3, образующий масляную ванну домкрата и плунжерный насос 4 ручного привода со всасывающими 5 и нагнетательным 6 клапанами. Определить давление рабочей жидкости в цилиндре и массу поднимаемого груза m, если усилие на рукоятке приводного рычага насоса R=150 Н, диаметр поршня домкрата D=180 мм, диаметр плунжера насоса d=18мм, КПД домкрата η = 0,68, плечи рычага а=60мм, b=600мм.

37.1. Домашний эксперимент.
1. Надуйте резиновый шарик.
2. Пронумеруйте фразы в таком порядке, чтобы получился связный рассказ о проделанном эксперименте.

37.2. В сосуде под поршнем заключен газ (рис. а), объем которого меняется при постоянной температуре. На рисунке б представлен график зависимости расстояния h, на котором относительно дна находится поршень, от времени t. Заполните пропуски в тексте, используя слова: увеличивается; не меняется; уменьшается.

37.3.На рисунке показана установка для изучения зависимости давления газа в закрытом сосуде от температуры. Цифрами обозначены: 1 – пробирка с воздухом; 2 – спиртовка; 3 – резиновая пробка; 4 – стеклянная трубка; 5 – цилиндр; 6 – резиновая мембрана. Поставьте знак «+» около верных утверждений и знак «» около неверных.


37.4. Рассмотрите графики зависимости давления p от времени t, соответствующие различным процессам в газах. Вставьте недостающие слова в предложение.

С течением времени давление
в процессе 1 увеличивается ;
в процессе 2 постоянное ;
в процессе 3 уменьшается .

38.1. Домашний эксперимент.
Возьмите полиэтиленовый пакет, сделайте в нем четыре дырочки одинакового размера в разных местах нижней части пакета, используя, например, толстую иглу. Над ванной налейте в пакет воды, зажмите его сверху рукой и выдавливайте воду через дырочки. Меняйте положение руки с пакетом, наблюдая, какие изменения происходят со струйками воды. Зарисуйте опыт и опишите свои наблюдения.

38.2. Отметьте галочкой утверждения, которые отражают суть закона Паскаля.
✓ Давление, производимое на газ или жидкость, передается в любую точку одинаково во всех направлениях.

38.3. Допишите текст.
Надувая резиновый шарик, мы придаем ему форму шара. При дальнейшем надувании шарик, увеличиваясь в объеме, по-прежнему сохраняет форму шара, что иллюстрирует справедливость закона Паскаля , а именно: газы передают производимое на них давление во все стороны без изменения.

38.4. На рисунке показана передача давления твердым и жидким телом, заключенным под диском в сосуде.

а) Отметьте верное утверждение.
После установки гири на диск возрастает давление … .
✓ на дно в обоих сосудах, на боковую стенку – только в сосуде 2

б) Ответьте на вопросы, записав необходимые формулы и проводя соответствующие расчеты.
С какой силой будет давить на диск площадью 100 см2 установленная на него гиря массой 200 г? F = m*g/S = 0,2*10/0,01 = 200 H
Как изменится при этом и на сколько давление:
на дно сосуда 1 200 Н ;
на дно сосуда 2 200 Н ;
на боковую стенку сосуда 1 0 Н ;
на боковую стенку сосуда 2 200 Н ?

39.1. Отметьте верное окончание фразы.

Нижнее и боковое отверстия трубки затянуты одинаковыми резиновыми мембранами. В трубку наливают воду и медленно опускают ее в широкий сосуд с водой до тех пор, пока уровень воды в трубке не совпадет с уровнем воды в сосуде. В этом положении мембраны … .
✓ обе плоские

39.2. На рисунке показан опыт с сосудом, дно которого может отпадать.

В ходе опыта были сделаны три наблюдения.
1. Дно пустой бутылки прижато, если трубка погружена в воду на некоторую глубину Н.
2. Дно по-прежнему прижато к трубке, когда в нее начинают наливать воду.
3. Дно начинает отходить от трубки в тот момент, когда уровень воды в трубке совпадет с уровнем воды в сосуде.
а) В левом столбце таблицы запишите номера наблюдений, которые позволяют прийти к выводам, обозначенным в правом столбце.

б) Запишите свои гипотезы о том, что может измениться в описанном выше опыте, если:
в сосуде будет находиться вода, а в трубку будут наливать подсолнечное масло дно трубки начнет отходить когда уровень масла будет выше уровня воды в сосуде;
в сосуде будет находиться подсолнечное масло, а в трубку будут наливать воду дно трубки начнет отходить раньше, чем совпадут уровни воды и масла.

39.3. В закрытом баллоне с площадью основания 0,03 м2 и высотой 1,2 м находится воздух плотностью 1,3 кг/м3. Определите «весовое» давление воздуха на дно баллона.

40.1. Запишите, какие из опытов, изображенных на рисунке, подтверждают, что давление в жидкости с глубиной увеличивается.

Поясните, что демонстрирует каждый из опытов.

40.2. Кубик помещен в жидкость плотностью p, налитую в открытый сосуд. Поставьте в соответствие указанным уровням жидкости формулы для вычисления давления, созданного столбом жидкости на этих уровни.

40.3. Отметьте знаком «+» верные утверждения.

Сосуды различной формы заполнили водой. При этом … .
+ давление воды на дно всех сосудов одинаково, поскольку давление жидкости на дно определяется только высотой столба жидкости.

40.4. Выберите пару слов, пропущенных в тексте. «Дном сосудов 1, 2 и 3 служит резиновая пленка, укрепленная в стойке прибора».

40.5. Чему равно давление воды на дно прямоугольного аквариума длиной 2 м, шириной 1 м и глубиной 50 см, доверху заполненного водой.

40.6. Используя рисунок, определите:

а) давление, созданное столбом керосина на поверхность воды:
pк = p*g*h = 800*10*0,5 = 4000 Па;
б) давление на дно сосуда, созданное только столбом воды:
pв = 1000*10*0,3 = 3000 Па;
в) давление на дно сосуда, созданное двумя жидкостями:
p = 4000 + 3000 = 7000 Па.

41.1. В одну из трубок сообщающихся сосудов налита вода. Что произойдет, если зажим с пластиковой трубки убрать?

Уровень воды в трубках станет одинаковым.
41.2. В одну из трубок сообщающихся сосудов налита вода, а в другую – бензин. Если зажим с пластиковой трубки убрать, то:

41.3. Впишите в текст подходящие по смыслу формулы и сделайте вывод.
Сообщающиеся сосуды заполнены одной и той же жидкостью. Давление столба жидкости

41.4. Какова высота столба воды в U-образном сосуде относительно уровня АВ, если высота столба керосина 50 см?

41.5. В сообщающиеся сосуды налиты машинное масло и вода. Рассчитайте, на сколько сантиметров уровень воды находится ниже уровня масла, если высота столба масла относительно границы раздела жидкостей Нм = 40 см.

42.1. На весах уравновесили стеклянный шар объемом 1 л. Шар закрыт пробкой, в которую вставлена резиновая трубка. Когда из шара при помощи насоса откачали воздух и зажали трубку зажимом, равновесие весов нарушилось.
а) Груз какой массы придется положить на левую чашу весов, чтобы их уравновесить? Плотность воздуха 1,3 кг/м3.

б) Каков вес воздуха, находившегося в колбе до откачивания?
Pвозд = m*g = 0,0013*10 = 0,013 H

42.2. Опишите, что произойдет, если конец резиновой трубки шара, из которого откачали воздух (см. задание 42.1), опустить в стакан с водой, а затем снять зажим. Объясните явление.
Шар заполнится водой, потому что давление внутри шара меньше атмосферного.

42.3. На асфальте начерчен квадрат со стороной 0,5 м. Рассчитайте массу и вес столба воздуха высотой 100 м, расположенного над квадратом, считая, что плотность воздуха не меняется с высотой и равна 1,3 кг/м3.

42.4. При движении поршня вверх внутри стеклянной трубки вода поднимается за ним. Отметьте правильное объяснение этого явления.

Вода поднимается за поршнем … .
✓ под давлением наружного воздуха, заполняя безвоздушное пространство, образовавшееся между поршнем и водой.

43.1. В кружках А, В, С схематично изображен воздух разной плотности. Отметьте на рисунке места, где следует расположить каждый кружок, чтобы в целом получилась картина, иллюстрирующая зависимость плотности воздуха от высоты над уровнем моря.

43.2. Выберите правильный ответ.
Для того чтобы покинуть Землю, любая молекула воздушной оболочки Земли должна обладать скоростью, большей чем … .
✓ 11,2 км/с

43.3. На Луне, масса которой примерно в 80 раз меньше массы Земли, отсутствует воздушная оболочка (атмосфера). Чем это можно объяснить? Запишите вашу гипотезу.
Молекулы воздуха слабо удерживаются Луной, в отличие от Земли. Поэтому Луна не имеет атмосферы.

44.1. Выберите правильное утверждение.
В опыте Торричелли в стеклянной трубке над поверхностью ртути … .

✓ создается безвоздушное пространство

44.2. В трех отрытых сосудах находится ртуть: в сосуде А высота столба ртути 1 м, в сосуде В – 1 дм, в сосуде С – 1 мм. Вычислите, какое давление на дно сосуда оказывает столб ртути в каждом случае.

44.3. Запишите значения давления в указанных единицах по приведенному образцу, округлив результат до целых.

44.4. Найдите давление на дно цилиндра, заполненного подсолнечным маслом, если атмосферное давление равно 750 мм рт. ст.

44.5. Какое давление испытывает аквалангист на глубине 12 м под водой, если атмосферное давление 100 кПа? Во сколько раз это давление больше атмосферного?

45.1. На рисунке показана схема устройства барометра-анероида. Отдельные детали конструкции прибора обозначены цифрами. Заполните таблицу.

45.2. Заполните пропуски в тексте.


На рисунках изображен прибор, который называется __барометр-анероид_.
Этим прибором измеряют ___атмосферное давление __.
Запишите показание каждого прибора с учетом погрешности измерения.

45.3. Заполните пропуски в тексте. «Разница атмосферного давления в разных слоях атмосферы Земли вызывает движение воздушных масс».

45.4. Запишите значения давления в указанных единицах, округляя результат до целых.

46.1. На рисунке а изображена трубка Торричелли, расположенная на уровне моря. На рисунках б и в отметьте уровень ртути в трубке, помещенной соответственно на горе и в шахте.

46.2. Заполните пропуски в тексте, используя слова, приведенные в скобках.
Измерения показывают, что давление воздуха быстро уменьшается (уменьшается, увеличивается) с увеличением высоты. Причиной тому служит не только уменьшение (уменьшение, увеличение) плотности воздуха, но и понижение (понижение, повышение) его температуры при удалении от поверхности Земли на расстояние до 10 км.

46.3. Высота Останкинской телебашни достигает 562 м. Чему равно атмосферное давление около вершины телебашни, если у ее основания атмосферное давление равно 750 мм рт. ст.? Давление выразите в мм рт. ст. и в единицах СИ, округлив оба значения до целых.

46.4. Выберите на рисунке и обведите график, который наиболее правильно отражает зависимость атмосферного давления p от высоты h над уровнем моря.

46.5. У кинескопа телевизора размеры экрана составляют l = 40 см и h = 30 см. С какой силой давит атмосфера на экран с наружной стороны (или какова сила давления), если атмосферное давление pатм = 100 кПа?

47.1. Постройте график зависимости давления p, измеряемого под водой, от глубины погружения h, заполнив предварительно таблицу. Считайте g = 10 Н/кг, pатм = 100 кПа.


47.2. На рисунке изображен открытый жидкостный манометр. Цена деления и шкалы прибора 1 см.
а) Определите, на сколько давление воздуха в левом колене манометра отличается от атмосферного. 10 мм

б) Определите давление воздуха в левом колене манометра с учетом того, что атмосферное давление 100 кПа.
р (лев) + p*g*h = p(атм) + p*g*h

47.3. На рисунке показана U-образная трубка, заполненная ртутью, правый конец которой закрыт. Чему равно атмосферное давление, если разность уровней жидкости в коленах U-образной трубки равна 765 мм, а мембрана погружена в воду на глубину 20 см?

47.4. а) Определите цену деления и показание металлического манометра (рис. а).

б) Опишите принцип действия прибора, используя цифровые обозначения деталей (рис. б).
Основная часть – согнутая в дугу металл. трубка 1, с помощью крана 4 сообщается с сосудом, в котором измеряется давление. Движение закрытого конца трубки при помощи рычага 5 и зубчатки 3 передается стрелке 2.

48.1. а) Зачеркните ненужные из выделенных слов, чтобы получилось описание работы поршневого насоса, изображенного на рисунке.

При движении рукоятки насоса вниз поршень в сосуде А движется вверх, вниз, верхний клапан открыт, закрыт, нижний клапан открыт, закрыт, вода из сосуда В не перемещается в пространство под поршнем, вода из отводящей трубы не выливается.

б) Опишите, что происходит при движении рукоятки насоса вверх.
Поршень движется вверх, вместе с ним поднимается вода из сосуда В, открывается нижний клапан и вода движется за поршнем. Вода из отводящей трубы выливается.

48.2. Поршневым насосом, схема которого приведена в задании 48.1, при нормальном атмосферном давлении можно поднять воду на высоту не более 10 м. Объясните почему.

48.3. Вставьте в текст пропущенные слова, чтобы получилось описание работы поршневого насоса с воздушной камерой.

49.1. Допишите формулы, показывающие правильные соотношения между площадями покоящихся поршней гидравлической машины и массами грузов.

49.2. Площадь малого поршня гидравлической машины равна 0,04 м2, площадь большого – 0,2 м2. С какой силой следует действовать на малый поршень, чтобы равномерно поднять груз массой 100 кг, находящийся на большом поршне?

49.3. Заполните пропуски в тексте, описывающем принцип действия гидравлического пресса, схема устройства которого показана на рисунке.

49.4. Опишите принцип действия отбойного молотка, схема устройства которого показана на рисунке.

По шлангу 3 подается сжатый воздух. Устройство 2, называемое золотником, направляет его поочередно то в верхнюю, то в нижнюю часть цилиндра. Под действием этого воздуха боек 4 начинает быстро перемещаться то в одну, то в другую сторону, периодически (с частотой 1000 – 1500 ударов в минуту), воздействуя на пику 1.

49.5. На рисунке показана схема устройства пневматического тормоза железнодорожного вагона.


а) Вставьте в текст пропущенные цифры, обозначающие соответствующие им детали на рисунке. «Когда магистраль ____ и резервуар 3 заполнены сжатым воздухом, его давление на поршень ___ тормозного цилиндра с обеих сторон одинаково, тормозные колодки при этом не касаются колес».

б) Выберите правильный порядок пропущенных цифр, обозначающих детали в тексте.
1 – 4 – 7 – 4 – 5 – 6

Как вы думаете, рыба, плавая в океане, замечает, что вокруг неё вода? А собака ощущает, что ходит по дну воздушного океана? Привычка притупляет наблюдательность. Рыба, которая родилась в воде и провела в ней всю свою жизнь, без сомнения, не замечает воды и не ощущает давления, вызванного её весом. Так же, как пес, конечно же, не обращает внимания на воздух вокруг себя и не чувствует его давления на свое тело. Мы тоже не заметили бы этого, если только не услышали бы от кого-нибудь или не прочитали в книгах. Что-то должно произойти, чтобы мы обратили внимание на воздух. Или он начинает быстро двигаться, и ветер дует нам в лицо, или в нем образуется хорошо видимое облако. Но самый наглядный способ убедиться в наличии воздуха - увидеть, как он давит на находящиеся в нем предметы.

Возьмите пластмассовый стакан или другой сосуд и полностью погрузите его в воду в ванне. Подождем, пока стакан заполнится водой и перевернем его вверх дном. Медленно начнем вытаскивать его из воды. Смотрите! Вода поднимается вместе со стаканом, и уровень ее намного выше, чем уровень воды в ванной. Казалось бы, воду в стакане ничто не поддерживает. Но это, конечно, не так, иначе бы она упала. Что же это за сила, поднимающая воду? На несколько сотен километров вверх простирается над нами океан воздуха. Хотя воздух нам кажется совершенно невесомым, он оказывает значительное давление на поверхности Земли на каждый квадратный сантиметр. Ваша ванна, конечно, не исключение, воздух давит на поверхность воды в ней так же, как и на всё остальное вокруг.

Когда мы начинаем вытаскивать перевернутый вверх дном стакан, вода в нем стремится опуститься под действием силы притяжения земли. Однако опуститься она не сможет. Почему?

Чтобы разобраться в этом, представьте, что вода действительно немного опустилась, как показано на рисунке. Что будет в пространстве над штриховой линией А? Естественно, воздуха здесь нет, а значит, и его давления тоже. Другими словами, в стакане на уровне А атмосферное давление на поверхность воды не действует. Теперь посмотрим на стрелки В и С. Они показывают, как действует атмосферное давление на поверхность воды в ванне. Воздух давит на воду, она сжата этим воздухом, а значит, стремится заполнить образовавшееся пустое пространство. В результате, как только вода начинает выливаться из стакана, давление будет гнать ее обратно в пространство над уровнем А, как показано на рисунке стрелками D и Е.

Атмосферного давления нет.

На самом деле вода в стакане никогда не опускается настолько, чтобы это стало заметно, атмосферное давление немедленно возвращает её обратно в стакан и удерживает там, пока мы вытаскиваем его.

Но если вода удерживается атмосферным давлением в стакане высотой 15 см, будет ли она так же удерживаться в сосуде высотой 30 см? А в 60-сантиметровом? 3-метровом? 5-метровом? Если дома у вас отыщется соответствующая посуда, вы убедитесь, что вода удерживается в них. Однако есть предел высоты водяного столба, который может быть удержан таким способом. Вода имеет массу намного большую, чем масса воздуха, если сравнить равные их объёмы. Вода в 800 раз тяжелее, чем воздух такого же объёма. Вода, как и воздух, давит на находящиеся в ней тела. Значит давление столба воды высотой 10 м (а точнее 10 м 33 см) как раз уравновесит атмосферное давление, которое, удерживает воду в сосуде. Таким образом, вы видите, что высота столба воды не может заметно превышать 10 метров.

Представим себе высокий 15-метровый «стакан» (вернее - трубу), перевёрнутый вверх дном, который мы вытаскиваем из воды, как показано на рисунке. Когда закрытая часть «стакана» достигает высоты около 10 м над уровнем воды, жидкость в «стакане» перестанет подниматься. Мы продолжаем поднимать «стакан», но вода внутри него стоит на прежнем уровне. При этом в сосуде выше уровня воды образуется пустое пространство.

Что случится с водой в сосуде, если атмосферное давление в силу каких-либо причин уменьшится? Новое атмосферное давление сможет удержать уже меньший столб воды, уровень воды в «стакане» понизится. А если внешнее давление воздуха увеличится? Оно сможет удержать высоту столба, большую чем 10 м, и вода в сосуде начинает подниматься.

В сущности, мы с вами разобрали принцип действия прибора - барометра, с помощью которого измеряют атмосферное давление. В нашем случае атмосферное давление уравновешивается столбиком воды определенной высоты. Давление воздуха может быть измерено высотой водяного столба, который он в состоянии удержать.

Водяной барометр такого типа был изобретен Отто фон Герике несколько столетий назад. В качестве «стакана» он использовал стеклянную трубу, закрытую в верхнем конце, которую наполнил водой и установил возле своего дома. Труба была опущена в резервуар с водой. Герике поставил барометр так, что уровень верхней части трубы был виден отовсюду жителям городка, и те могли наблюдать, как поплавок на поверхности воды в трубе, отмечавший ее уровень, поднимался и опускался соответственно с изменениями атмосферного давления. Если поплавок в барометре резко падал, горожане уже знали, что давление воздуха падает, и, скорее всего, близится ненастье, а когда поплавок поднимался в трубке, это означало, что хорошая погода скоро придет в городок.

Почему изменение атмосферного давления означает вероятное изменение погоды? Оказывается, теплый влажный воздух, который обычно приносит пасмурную погоду, легче холодного и сухого - предвестника ясной и хорошей погоды, значит, при ухудшении погоды давление должно падать, а при улучшении - повышаться. Барометр - широко используемый прибор. Правда, труба высотой 10 метров, да еще наполненная водой, очевидно, очень неудобна для применения.

Можно значительно укоротить трубу, если вместо воды использовать ртуть - жидкий металл, который в 13.6 раза тяжелее воды. В ртутном барометре давление, уравнивающее атмосферное, создается столбом жидкости высотой лишь 1033/13.6 = 76 (см). Это, конечно, намного удобнее, чем 10 с лишним метров, поэтому в барометрах вместо воды лучше, использовать ртуть. Такой прибор по своей конструкции ничем не отличается от водяного, только он намного меньше, и трубу необязательно придерживать рукой - она закрепляется в необходимом положении, каким-нибудь более удобным способом.

Открытый прямоугольный резервуар заполнен жидкостью (рис.1) до глубины Н. Найти абсолютное и избыточное давление на дне резервуара. Данные для расчета приведены в табл.1.

Закрытый прямоугольный резервуар заполнен жидкостью до глубины Н (рис.2). Задаются плотность жидкости ρ, избыточное давление на поверхности p 0 (см. табл.2). Определить пьезометрическую высоту h p и построить эпюру избыточного давления на стенку, указанную в таблице 2.

Плотность, кг/м 3

Плотность, кг/м 3

Плотность, кг/м 3

Вариант 1

Вертикальноерасстояние между горизонтальными осями резервуаров, заполненных водой, а= 4 м, при этом манометрическое давление на оси правого. резервуара p 2 = 200 кПа. Разность уровней ртути h =100 см. Уровень ртути в левом колене рас­положен ниже оси левого резервуара на Н = 6 м.

Определить манометрическое гидростатическое давление p 1 на оси левого резервуара, а также уверхней образующейего, если диаметр резервуара d = 2 м.

Вариант 2

Ртутныйманометр присоединен к резервуару, заполненному водой.

I) Определить избыточное давление на поверх­ности воды в резервуаре p 0 , если h 1 = 15 см, h 2 = 35 см. 2) Определить величину вакуума над поверхностью воды, если уровни ртути в обоих коле­нах манометра выровняются? Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 3

К закрытому резервуару, наполненному водой на глубину Н = 10 м, присоединен ртутный мано­метр. Разность уровней ртути в манометре состав­ляет h =100 см, при этом свободная поверхность воды в резервуаре превышает уровень ртути в левом колене на величину Н = 12 м. Атмосферное давление p a = 100 кПа.

I. Определить абсолютное давление воздуха p 0 в пространстве над свобод­ной поверхностью воды в резервуаре. 2. Найти абсолютное гидростатическое давление в самой низ­кой точке дна резервуара.

Вариант 4

В закрытом резервуаре находится вода с глубиною Н = 5 м, на свободной поверхности которой манометрическое давление p 0 = 147,15 кПа.К ре­зервуару на глубине h = 3 мприсоединен пье­зометр, т.е. трубка, открытаясверху и сообщаю­щаяся с атмосферой.

1. Определить пьезометрическую высоту h p .

2. Найти величину манометрического гидростатического давления на дне сосуда.

Вариант 5

В дифференциальном манометре, присоединен­ном к закрытомурезервуару, разность уровнейртути составляет h = 30 см.Открытое правое колено манометра сообщается с атмосферой, дав­ление которой равно p a =100 кПа. Уровень рту­ти в левом колене манометра находится в горизон­тальной плоскости, совпадающей с дном резервуа­ра.

1) Найтиабсолютное давление воздуха и ва­куум в пространстве над свободной поверхностью воды в резервуаре.

2) Определить абсолютное гид­ростатическое давление на дне резервуара. Глуби­на воды в резервуаре Н = 3,5 м.

Вариант 6

К закрытому резервуару с горизонтальным дном присоединен пьезометр. Атмосферное давление на поверхности воды в пьезометре р а =100 кПа. Глубина воды в резервуаре h =2 м, высота воды в пьезометре Н = 18 м. Определить абсолютное давление на поверхности воды в резервуаре и аб­солютное и избыточное давление на дне.

Вариант 7

Точка А заглублена под горизонтомводы в сосуде на величину h = 2,5 м, пьезометрическая высота для этой точки равна h Р = 1,4 м.

Определить для точки А величину абсолютного давления, а такжевеличинувакуума на поверхности воды в сосуде, если атмосферное давление p a = 100 кПа.

Вариант 8

К закрытому сосуду подведены две трубки, как показано на чертеже. Левая трубка опущена в банку с водой, правая заполнена ртутью.

Определить абсолютное давление воздуха p 0 на поверхности жидкости в сосуде и высоту, стол­ба ртути h 2 , если высота столба воды h 1 =3,4 м, а атмосферное давление р a = 100 кПа. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 9

Два закрытых резервуара, горизонтальные днища которых расположены в одной плоскости, соединены дифференциальным манометром, разность уровней ртути в нём h =100 см, при этом уровень ртути в левом колене совпадает с плос­костью дна резервуара. В левом резервуаре нахо­дится вода с глубиной H 1 = 10 м. В правом содер­жится масло с глубиной H 2 = 8 м. Плотность мас­ла ρ м = 800 кг/м 3 , плотность ртути ρ рт = 13600 кг/м 3 .На поверхностиводы манометрическое давление p 1 = 196 кН/м 2 . Найти манометрическое давление на поверхности масла p 0 . Определить манометрическое давление на дне каждого резервуара.

Вариант 10

Горизонтально расположенные круглые резервуары заполнены водой. Диаметркаждого резервуа­ра Д =2 м. Разность уровней ртути в манометре h = 80 см. Манометрическое гидростатическое давление p 1 на оси левого резервуара равно 98,1 кПа. Ось правого резервуара находится ниже оси левого на z = 3 м/

Определить манометрическое гидростатическое давление p 2 , на оси правого резервуара, а так­же на нижней его образующей – в точке А.

Вариант 11

Определить разность давлений в точках, на­ходящихся на осях цилиндров Аи В, заполненных водой, если разность уровнейртути в дифферен­циальномманометре Δh = 25 см, разность уровней осей цилиндров Н = 1 м.

Вариант 12

Закрытая сверху трубка опущена открытым концом в сосуд с водой. На свободной поверхности воды в трубке абсолютное давление р 0 =20 кПа. Атмосферное давлениер а =100 кПа.Определить высоту поднятия воды в трубке h.

Вариант 13

В закрытом резервуаре с горизонтальным дномсодержится нефть. Глубина нефти Н=8 м. Найтиманометрическое и абсолютное давление на дне ре­зервуара, если манометрическоедавление над сво­бодно л поверхностью нефти равно p 0 = 40 кПа, Плотность нефтиρ н = 0,8 г/см 3 . Атмосферноедавление р а = 100 кПа.

Вариант 14

Абсолютное давление наповерхности водыв сосуде р 0 = 147 кПа.

Определить абсолютное давление и манометри­ческое давление в точке А, находящейся из глу­бине h = 4,8 м, найти такжепьезометрическую; высоту h p для этой точки. Атмосферное давлениер а = 100 кПа.

Вариант 15

Определить избыточное поверхностное давле­ние р 0 в закрытом сосуде с водой, если в трубке открытого манометре ртуть поднялась на в высоту h = 50 см. Поверхность воды находится на вы­соте h 1 = 100 см от нижнего уровня ртути. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 16

Два закрытых резервуара, оси которых нахо­дятся в одной горизонтальной плоскости, запол­нены водой и соединены П-образной трубкой.

Уровни воды в левом и правом коленах соот­ветственно равны, z л = 1,5 м, z п = 0,5 м.

Верхняя часть трубки заполнена маслом, плотность которого ρ м = 800 кг/м 3 . Манометри­ческое давление на оси левого резервуара р л = 78,5 кПа. Определить манометрическое дав­ление на оси правого резервуара и на линии раз­дела воды и масла в левой трубке.

Вариант 17

В закрытом резервуаре находится вода с глу­биной Н = 2м, на свободной поверхности которой давление равно р 0 . В присоединенном к резервуару дифференциальном манометре разность уровней сос­тавляет h = 46 см. Уровень ртути в левом колене совпадает с дном резервуара. Определить абсолютное давление р 0 и абсолютное гидростатическое давление на дне резервуара, если атмосферное давление р а = 100 кПа.

Вариант 18

Водосливное отверстие плотины, удерживающей воду в водохранилище, закрыто сегментным затвором АЕ кругового очертания радиусом r = 2 м. Определить абсолютное гидростатическое давление в нижней точке затвора Е Е,абс ) и найти высоту плотины h , если избыточное давление на дне водохранилища р д,и = 75 кПа. Атмосферное давление р а =101 кПа.

Вариант 19

Определить разность уровней ртути h в соединительной трубке сообщающихся сосудов, если давление на поверхности воды в левом сосуде р 1 = 157 кПа. Возвышение уровня воды над нижним уровнем ртути Н = 5 м. Разность уровней воды и масла Δh = 0,8 м. р 2 = 117 кПа. Плотность масла ρ м = 800 кг/м 3 . Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 20

Два резервуара круглого сечения, расположен­ные на одном уровне, заполнены водой. Диаметр каждого резервуара D = 3 м. Разность уровней ртути h = 40 см. Гидростатическое давление на оси первого резервуара р 1 = 117 кПа. Опреде­лить гидростатическое давление на оси второго резервуара р 2 , а также в нижнейего точке. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 21

В резервуаре находится вода. Горизонтальная часть внутренней стенки резервуара ВС расположена на глубине h = 5 м. Глубина воды в резервуаре Н = 10 м. Атмосферное давление р а = 100 кПа.

Найти манометрическое гидростатическое давление в точках В и С, построить эпюру этого давления на стенку АВСД и определить абсолютное гидростатическое давление на дно резервуара.

Вариант 22

Разность уровней воды в закрытых резервуарах, сообщающихся между собой, составляет h = 4 м. В левом резервуаре глубина воды H = 10 м и абсолютное давление на свободной поверхности воды p 1 = 300 кПа.

Найти абсолютное давление воздуха р 2 на свободной поверхности воды в правом резервуаре и на дне резервуаров.

Вариант 23

В закрытом резервуаре содержится минеральное масло, имеющее плотность ρ = 800 кг/м 3 . Над свободной поверхностью масла избыточное давление воздуха р ои = 200 кПа. К боковой стенке резервуара присоединен манометр, показанный на чертеже. Вычислить:

1. Избыточное давление на дно резервуара и

2. Показание манометра

Вариант 24

Вакуумметр В, присоединенный к резервуару выше уровня воды, показывает вакуумметрическое давление р вак = 40 кПа. Глубина воды в резервуаре Н = 4 м. С правой стороны к резервуару выше уровня воды присоединен жидкостный ртутный вакуумметр.

Вычислить:

    абсолютное давление воздуха в резервуаре р абс,

    высоту поднятия воды в жидкостном вакуумметре h,

    абсолютное давление на дно резервуара р дабс,

Атмосферное давлении р а = 98,06 кПа. Плотность ртути ρ рт = 13600 кг/м 3 .

Вариант 25

Разность уровней воды в резервуарах h= 15 м. Глубина воды в левом резервуаре Н = 8 н.

Вычислить

    манометрическое давление воздуха над поверхностью воды в закрытом левом резервуаре р о,

    избыточное давление на дно левого резервуара р ди,

    построить эпюру избыточного давления на левую вертикальную стенку закрытого резервуара.

Вариант 26

В закрытом резервуаре находятся три разные жидкости: минеральное масло с плотностью ρ м = 800 кг/м 3 вода и ртуть с плотностью ρ рт = 13600 кг/м 3 . Уровень ртути в пьезометре на 0,15 м выше, чем в резервуаре (h 3 = 0,15 м). Атмосферное давление р а = 101 кПа. Вычислить:

1. Абсолютное давление воздуха под крышкой резервуара;

2. Вакуумметрическое давление под крышкой резервуара если h 1 = 2 м, h 2 = 3 м.

Вариант 27

В герметично закрытом резервуаре находится минеральное масло с плотностью ρ м = 800 кг/м 3 . Глубина масла h 1 = 4 м. К стенке резервуара выше уровня масла присоединен ртутный манометр, в котором разность уровней ртути h 2 = 20 см. Атмосферное давление р а = 101 кПа. Уровень ртути в левом колене манометра и уровень масла в резервуаре находятся на одной отметке.

Определить абсолютное давление воздуха под крышкой резервуара о,абс ) и манометрическое давление масла на дне резервуара д, м )

Вариант 28

В герметично закрытом баке находится вода. К боковой стенке бака на глубине h = 1,2 м подсоединен механический манометр, который показывает гидростатическое давление р м = 4 атм. Определить абсолютное давление на свободной поверхности воды в баке р о,абс и величину давления, которую показывает манометр, установленный на крышке бака. Атмосферное давление равно 101 кПа.

Вариант 29

Два бака с водой разделены вертикальной стенкой, в нижней части которой имеется отверстие. Левый бак открытый. Правый бак закрыт герметичной крышкой. Глубина воды в левом баке h 1 = 8 м. Глубина воды в правом баке h 2 = 1 м.

Атмосферное давление р а =101 кПа.

Определить избыточное гидростатическое давление воздуха под крышкой правого бака и абсолютное давление на дне правого бака.

Вариант 30

Два герметично закрытых резервуара с водой соединены ртутным манометром. Манометрическое давление воздуха над поверхностью воды в левом резервуара р л, м = 42 кПа. Абсолютное давление воздуха над поверхностью воды в правом резервуара р п, абс =116 кПа. Глубина воды над уровнем ртути в левом резервуара h 1 = 4 м. Глубина воды над уровнем ртути в правом резервуара h 3 = 2,5 м. Атмосферное давление р а =101 кПа. Определить разность уровней ртути в манометре h 2 .

Гидростатическое давление.

Основным понятием гидростатики является гидростатическое давление – давление в данной точке покоящейся жидкости. Из курса физики известно, что давление есть величина, равная отношению силы давления (направленной перпендикулярно к площадке) к площади поверхности, на которую она действует.

Р = F / S (2-1)

В формуле (2-1) определяется среднее давление, так как сила может действовать на поверхность площадки неравномерно. Внутри жидкости каждая частица подвергается всестороннему сжатию со стороны соседних частиц. Если мысленно окружить рассматриваемую частицу жидкости очень маленькой сферой, площадь которой имеет значение ∆S – (знак указывает на её малое значение), то среднее давление на сферу можно определить как

Р = ∆F / ∆S (2-2)

Если площадь поверхности сферы (очень маленькую) продолжать уменьшать до нуля, то в пределе она превратиться в точку. При этом среднее давление станет истинным давлением в рассматриваемой точке внутри жидкости (гидростатическим ). Математически это можно записать следующим образом:

Р= lim (∆ F / ∆S) = δF/ δS (2-3)

∆S →0

lim означает предел; в пределе малая величина превращается в бесконечно малую δ (дифференциал).

Гидростатическое давление имеет два важных свойства:

-оно всегда направлено перпендикулярно к площадке;

-его действие не зависит от ориентации площадки в пространстве, т.е. со всех сторон оно одинаково.

2.2. Основное уравнение гидростатики.

В общем случае равновесия некоторого объёма жидкости под действием приложенных к нему сил знаменитым учёным Российской Академии наук Леонардом Эйлером было получено дифференциальное уравнение, решение которого позволяет получить расчётные формулы для нахождения гидростатического давления в разных конкретных случаях. Так, если на частицы жидкости действует только сила тяжести, то дифференциальное уравнение равновесия частиц внутри жидкости имеет следующий вид:

δ Р = - ρ gdz (2-4)

Здесь осьZ – вертикальная ось; ускорение свободного падения имеет направление, противоположное оси Z (на это указывает знак минус "–" в уравнении). Плотность жидкости ρ, как и ускорениеg , постоянные величины, не зависящие от давления и температуры

Решение (интегрирование) уравнения имеет следующий вид:

Р = - ρ gz + с (2-5)

Постоянную интегрирования находим следующим образом. Пусть рассматриваемая точка жидкости m находится на расстоянии Н от поверхности жидкости. При z = z 0 P = P 0

Следовательно, P 0 = - ρ gz + с Отсюда: с = P 0 + ρ gz 0 Подставляем значение с в формулу (2-5) и окончательно получаем формулу для расчёта гидростатического давления в точке, находящейся под слоем жидкости высотой Н :

Р = P 0 + ρ g Н (2-6)

Давление Р называют абсолютнымдавлением в точке, P 0 - внешнее поверхностное давление (в открытом сосуде оно равно атмосферному давлению),

Р - P 0 =P в = ρ g Н – давление столба жидкости высотой Н (его также называют весовым или избыточным давлением). В технике приборами, как правило, измеряется избыточное давление.

В дальнейшем атмосферное давление условимся обозначатьР атм, абсолютное – Р А, а избыточное – Р изб.

Выражение (2-6) называется основным уравнением гидростатики. Согласно этому уравнению, давление на поверхности жидкости P 0 передаётся всем точкам объёма жидкости и по всем направлениям одинаково (закон Паскаля – гиперссылка.

Из формулы (2-1) следует, что в системе СИ единицей измерения давления служит паскаль: Па = н/ м 2 . Это небольшая величина и на практике часто используют более крупные единицы КПа=10 3 Па и МПа=10 6 Па.

2.3. Виды давления: атмосферное, избыточное, весовое, абсолютное, вакуумметрическое .

Атмосферное давление было открыто ещё в 16 в. известным итальянским учёным Торичелли. В земной атмосфере на любое тело, находящееся на поверхности земли давит воздушный столб. Его среднее давление Р = ρg Н определяется средней плотностью воздуха ρ и высотой воздушного столбаН. Согласно измерениям Торичелли это давление соответствует давлению столба ртути высотой 733 мм. Более поздние исследования показали, что это давление (его назвали нормальным атмосферным давлением) составляет 760 мм.рт.ст. или в системе СИ -0,1013 МПа=101,3 КПа. Округлённо в расчётах его берут равным 100 КПа=0,1 МПа.

В закрытом сосуде над поверхности жидкости с помощью, например, компрессора, можно создать избыточное давление Р изб. В этом случае абсолютное давление в точке под слоем жидкости на глубине Н будет равно:

Р А = P 0 + ρ g Н = Р атм + (Р изб + ρ g Н) (2-7)

В подобных случаях давление столба жидкости принято называть весовым давлением. Из определения избыточного давления следует, что в закрытом сосуде на глубине Н оно складывается из Р изб воздуха и весового P в = ρ g Н (давления столба жидкости высотой Н).

Рисунок 2.1

Избыточное давление Р изб в воздухе над поверхностью жидкости можно определить с помощью простого прибора, называемого пьезометром . Это стеклянная трубка малого диаметра, подсоединённая к сосуду с жидкостью (рис. 1-2). Из формулы (1-12) следует, что изменение величины P 0 одинаково для всех точек внутри жидкости. Если давление над поверхностью жидкости равно атмосферному (P 0 =Р атм), то, согласно формуле (2-4) жидкость в трубке установится на той же высоте, что и в сосуде (уровень 0-0). При увеличении давления

P 0 =P атм + Р изб это избыточное давление Р изб передаётся всем точкам жидкости, в том числе и тем, которые лежат на границе жидкость-воздух в трубке

(уровень 0-0; абсолютные давления в точках 1 и 2 одинаковы).

Р 0 =Р атм + Р Р атм

Рис. 2.2. Схема измерения избыточного давления

Так как давление со стороны жидкости на них превысит давление воздуха P атм, жидкость в трубке начнёт подниматься до нового положения равновесия (на высоту h ). Следовательно, Р изб = ρ gh.

За нулевой уровень можно принять любой другой уровень, например, проходящий на глубине Н (уровень 0 1 -0 1). Абсолютные давления в точках 3 и 4 одинаковы.

Но P 3 =P 0 + ρ g Н =P атм + Р + ρ g Н ;

В данном случае давление Р является избыточным давлением Р =Р изб.P 4 =P атм + ρ gh + ρ g Н . Сравнивая правые части, снова получаем Р=Р изб = ρ gh .

Пьезометры рассчитаны на измерение малых давлений (избыточное давление 0,1 ат поднимает воду в пьезометре на высоту 1 м).

Рассмотрим случай, когда абсолютное давление над поверхностью жидкости P А становится меньше атмосферного (при откачивании воздуха из пространства над жидкостью), Давление в точке 1 при условии Р А <Р атм можно измерить с помощью, так называемого обратного пьезометра или вакуумметра (см. рис. 1-3). Очевидно, что горизонт жидкости в изогнутой трубке опустится ниже уровня точки 1 на высоту h вак. Эта высота по отношению к уровню, проходящему через точку 1, будет отрицательной, если высоту Н считать положительной.

Давление в точке 1 сверху будет равно:

Р А = Р 0 + ρ g Н .

Давление в точке 1 со стороны трубки равно:

Р атм - ρ gh вак .

Из равенства этих формул следует, что давление Р А = Р атм - ρ gh вак . Отсюда

h вак =(Р атм – Р А)/ ρ g. (2-8) Эту величину называют вакуумметрической высотой ,

Рисунок 2.3. Схема измерения вакуумметрической высоты с помощью вакуумметра.

Она характеризует разность двух давлений Р атм – Р А в точке 1. Именно эту разность и называютвакуумом.

Избыточное давление в жидкости можно создать с помощью насос, оказывая на неё силовое действие (рабочим органом насоса). При движении рабочего органа (поршень, ротор и т.п.) на входе в насос образуется вакуум (разряжение), а нв выходе насоса-избыточное давление. Измеряются они с помощью приборов (манометров, мановакуумметров).

2.4. Давление жидкости на плоскую и цилиндрическую стенки.

Рис. 2.4. Схема к определению равнодействующей гидростатического давления на плоскую поверхность. Эпюра сил давления. Справа- развёрнутая поверхность стенки.

На плоскую стенку в сосуде с жидкостью действуют силы давления, направленные перпендикулярно к ней.

С ростом глубины погружения Н растёт и величина избыточного давления Р = ρ g Н, а, следовательно, и сила давления на стенку. Можно показать, что средняя сила давления на вертикальную стенку равна произве-дению давления в центре стенки на площадь стенки:

F = P c S, где P c = ρ gН с = ρ g Н/2 (2-9)

Давление на горизонтальную поверхность дна сосуда во всех точках одинаково, поэтому сила давления на дно сосуда равна

Рис.2.5.Эпюра сил давления для наклонной стенки.

F = PS, где P= ρ g Н (2-10)

В случае криволинейных стенок чаще всего необходимо определить силу, действующую на цилиндрическую поверхность, имеющую вертикальную ось симметрии. Возможны два варианта. Первый вариант -жидкость воздействует на стенку изнутри.

Во втором варианте жидкость действует на стенку снаружи. Рассмотрим первый вариант.

Выделим объём жидкости, ограниченный рассматриваемым участком цилиндрической поверхности AB , участком свободной поверхности CD, расположенным над участком AB, и двумя вертикальными поверхностями BC и CD , проходящими через точки A и B . Эти поверхности ограничивают объём ABCD , который находится в равновесии. Рассмотрим условия равновесия этого объёма в вертикальном и горизонтальном направлениях. Заметим, что, если жидкость действует на поверхность AB, c какой то силой F , то с такой же силой, но в обратном направлении, и поверхность действует на рассматриваемый объём жидкости. Эту силу, перпендикулярную поверхности AB , можно представить в виде горизонтальной F г и вертикальной F в составляющих.

Условие равновесия объёма ABCD в вертикальном направлении выглядит, так: F в = P 0 S г + G (2-10)

где P 0 – внешнее давление, S г – площадь горизонтальной проекции поверхности AB, G – вес выделенного объёма жидкости.

P 0
h c
G
C
E
D
A
F x
D
F R
F R
δ
P
Зная F г и F в определим полную силуF, действующую на цилиндрическую поверхность

Рассмотрим трубу длиной l с внутренним диаметром D и толщиной стенок δ , находящуюся под действием гидростатического давления P . Это давление порождает разрывающие силы F x . Из-за симметричности трубы такие разрывающие силы будут действовать одинаково во всех направлениях. Для вертикальной плоскости эта сила будет равна

F х = πDl (2-12) ,

где произведение Dl – есть вертикальная проекция площади стенки трубы.

Рис.2.7. К определению разрывающей силы в трубе.

Разрывающей силе будут противодействовать силы реакции F R , возникающие в стенках трубы. Площадь стенок трубы S c в любом осевом сечении составит:

S c =2l δ (2-13)

Под действием разрывающих сил в стенках трубы будет возникать суммарная сила реакция F R , равная по величине разрывающей силе, но направленная в противоположную сторону:

Отсюда находится напряжение σ в стенках трубы, вызываемое давлением внутри трубы. Оно равняется

σ = F R /S c = (PDl)/ (2l δ) =PD/2 δ (2-14)