Примери за логаритми с различни основи. Логаритмични изрази

Инструкции

Напишете дадения логаритмичен израз. Ако изразът използва логаритъм от 10, тогава записът му се съкращава и изглежда така: lg b е десетичният логаритъм. Ако основата на логаритъма е числото e, тогава напишете израза: ln b – натурален логаритъм. Разбираемо е, че резултатът от any е степента, на която трябва да се повдигне основното число, за да се получи числото b.

Когато намирате сумата на две функции, просто трябва да ги разграничите една по една и да съберете резултатите: (u+v)" = u"+v";

Когато намирате производната на произведението на две функции, е необходимо да умножите производната на първата функция по втората и да добавите производната на втората функция, умножена по първата функция: (u*v)" = u"*v +v"*u;

За да се намери производната на частното на две функции, е необходимо да се извади от произведението на производната на дивидента, умножено по функцията делител, произведението на производната на делителя, умножено по функцията на делителя, и да се раздели всичко това чрез функцията делител на квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Ако се даде сложна функция, тогава е необходимо да се умножи производната на вътрешната функция и производната на външната. Нека y=u(v(x)), тогава y"(x)=y"(u)*v"(x).

Използвайки резултатите, получени по-горе, можете да разграничите почти всяка функция. Така че нека да разгледаме няколко примера:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *х));
Има и проблеми, свързани с изчисляването на производната в точка. Нека е дадена функцията y=e^(x^2+6x+5), трябва да намерите стойността на функцията в точката x=1.
1) Намерете производната на функцията: y"=e^(x^2-6x+5)*(2*x +6).

2) Изчислете стойността на функцията в дадена точка y"(1)=8*e^0=8

Видео по темата

Полезен съвет

Научете таблицата на елементарните производни. Това значително ще спести време.

източници:

  • производна на константа

И така, каква е разликата? ирационално уравнениеот рационалното? Ако неизвестната променлива е под знака корен квадратен, тогава уравнението се счита за ирационално.

Инструкции

Основният метод за решаване на такива уравнения е методът за конструиране на двете страни уравненияв квадрат. Въпреки това. това е естествено, първото нещо, което трябва да направите, е да се отървете от знака. Този метод не е технически труден, но понякога може да доведе до проблеми. Например, уравнението е v(2x-5)=v(4x-7). Като повдигнете двете страни на квадрат, получавате 2x-5=4x-7. Решаването на такова уравнение не е трудно; х=1. Но номер 1 няма да бъде даден уравнения. Защо? Заместете едно в уравнението вместо стойността на x и дясната и лявата страна ще съдържат изрази, които нямат смисъл, т.е. Тази стойност не е валидна за квадратен корен. Следователно 1 е външен корен и следователно дадено уравнениеняма корени.

И така, ирационално уравнение се решава с помощта на метода на повдигане на квадрат на двете му страни. И след като се реши уравнението, е необходимо да се отрежат външни корени. За да направите това, заменете намерените корени в оригиналното уравнение.

Помислете за друг.
2х+vх-3=0
Разбира се, това уравнение може да бъде решено с помощта на същото уравнение като предишното. Преместване на съединения уравнения, които нямат квадратен корен, в правилната странаи след това използвайте метода на повдигане на квадрат. решаване на полученото рационално уравнение и корени. Но и друг, по-елегантен. Въведете нова променлива; vх=y. Съответно ще получите уравнение от формата 2y2+y-3=0. Тоест обичайното квадратно уравнение. Намерете неговите корени; y1=1 и y2=-3/2. След това решете две уравнения vх=1; vх=-3/2. Второто уравнение няма корени; от първото намираме, че x=1. Не забравяйте да проверите корените.

Разрешаването на идентичности е доста просто. За да направите това, е необходимо да се извършват идентични трансформации, докато се постигне поставената цел. Така с помощта на прости аритметични действия поставеният проблем ще бъде решен.

Ще имаш нужда

  • - хартия;
  • - химилка.

Инструкции

Най-простите от тези трансформации са алгебричните съкратени умножения (като квадрат на сумата (разликата), разликата на квадратите, сумата (разликата), кубът на сумата (разликата)). Освен това има много и тригонометрични формули, които по същество са едни и същи самоличности.

Наистина, квадратът на сбора от два члена е равен на квадрата на първия плюс два пъти произведението на първия по втория и плюс квадрата на втория, тоест (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Опростете и двете

Общи принципи на решението

Повторете от учебник по математически анализ или висша математика какво е определен интеграл. Както е известно, решението определен интегралима функция, чиято производна дава интегранд. Тази функциясе нарича антидериват. Въз основа на този принцип се конструират основните интеграли.
Определете според вида на интегранта кой от табличните интеграли е подходящ в този случай. Не винаги е възможно да се определи това веднага. Често табличната форма става забележима само след няколко трансформации за опростяване на интегранта.

Метод за заместване на променливи

Ако функцията интегранд е тригонометрична функция, чийто аргумент съдържа някакъв полином, опитайте да използвате метода за заместване на променлива. За да направите това, заменете полинома в аргумента на интегранта с нова променлива. Въз основа на връзката между новите и старите променливи, определете новите граници на интегриране. Като диференцирате този израз, намерете новия диференциал в . Така че ще получите новият видна предишния интеграл, близък или дори съответстващ на всеки табличен.

Решаване на интеграли от втори род

Ако интегралът е интеграл от втори вид, векторна форма на интегранта, тогава ще трябва да използвате правилата за преход от тези интеграли към скаларни. Едно такова правило е отношението на Остроградски-Гаус. Този закон ни позволява да преминем от роторния поток на определена векторна функция към тройния интеграл върху дивергенцията на дадено векторно поле.

Замяна на интеграционни граници

След намиране на антипроизводното е необходимо да се заменят границите на интегриране. Първо, заместете стойността на горната граница в израза за антипроизводното. Ще получите някакъв номер. След това извадете от полученото число друго число, получено от долната граница в антипроизводното. Ако една от границите на интегриране е безкрайност, тогава при заместването й в противопроизводна функциянеобходимо е да се стигне до границата и да се намери това, към което се стреми изразът.
Ако интегралът е двуизмерен или триизмерен, тогава ще трябва да представите границите на интеграцията геометрично, за да разберете как да оцените интеграла. Наистина, в случая на, да речем, триизмерен интеграл, границите на интегриране могат да бъдат цели равнини, които ограничават обема, който се интегрира.

Логаритмични изрази, решаване на примери. В тази статия ще разгледаме проблеми, свързани с решаването на логаритми. Задачите поставят въпроса за намиране на значението на израз. Трябва да се отбележи, че понятието логаритъм се използва в много задачи и разбирането на значението му е изключително важно. Що се отнася до Единния държавен изпит, логаритъмът се използва при решаване на уравнения, в приложни задачи, а също и в задачи, свързани с изучаването на функции.

Нека дадем примери, за да разберем самото значение на логаритъма:


Основна логаритмична идентичност:

Свойства на логаритмите, които винаги трябва да се запомнят:

*Логаритъмът на произведението е равен на сумата от логаритмите на факторите.

* * *

*Логаритъмът на частното (дроб) е равен на разликата между логаритмите на факторите.

* * *

*Логаритъмът на степенна степен е равен на произведението на степенната степен и логаритъма на нейната основа.

* * *

*Преминаване към нова основа

* * *

Още имоти:

* * *

Изчисляването на логаритми е тясно свързано с използването на свойствата на показателите.

Нека изброим някои от тях:

Същността на това свойство е, че когато числителят се прехвърли в знаменателя и обратно, знакът на степента се променя на противоположния. Например:

Следствие от това свойство:

* * *

При повишаване на степен на степен основата остава същата, но показателите се умножават.

* * *

Както видяхте, самата концепция за логаритъм е проста. Основното е, че имате нужда от добра практика, която ви дава определено умение. Разбира се, изисква се познаване на формулите. Ако умението за преобразуване на елементарни логаритми не е развито, тогава при решаване на прости задачи лесно можете да направите грешка.

Практикувайте, решавайте първо най-простите примери от курса по математика, след това преминете към по-сложните. В бъдеще определено ще покажа как се решават „страшни“ логаритми; те няма да се появят на Единния държавен изпит, но представляват интерес, не ги пропускайте!

Това е всичко! Късмет!

С уважение, Александър Крутицких

P.S: Ще съм благодарен, ако ми разкажете за сайта в социалните мрежи.

основни свойства.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

идентични основания

Log6 4 + log6 9.

Сега нека усложним малко задачата.

Примери за решаване на логаритми

Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x >

Задача. Намерете значението на израза:

Преход към нова основа

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

Задача. Намерете значението на израза:

Вижте също:


Основни свойства на логаритъма

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой.

Основни свойства на логаритмите

Познавайки това правило, вие ще знаете както точната стойност на експонента, така и датата на раждане на Лев Толстой.


Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.

3.

4. Където .



Пример 2. Намерете x if


Пример 3. Нека е дадена стойността на логаритмите

Изчислете log(x), ако




Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много са изградени върху този факт тестови работи. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм. Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя.

Логаритмични формули. Логаритми примерни решения.

Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като продуктът не се променя при пренареждане на множители, ние спокойно умножихме четири и две и след това се занимавахме с логаритми.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

Обърнете внимание, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица - логаритъм равно на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Вижте също:

Логаритъмът от b при основа а означава израза. Да се ​​изчисли логаритъм означава да се намери степен x (), при която равенството е изпълнено

Основни свойства на логаритъма

Необходимо е да се знаят горните свойства, тъй като почти всички задачи и примери, свързани с логаритми, се решават на тяхна основа. Останалите екзотични свойства могат да бъдат извлечени чрез математически манипулации с тези формули

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Когато изчислявате формулата за сбора и разликата на логаритмите (3.4), срещате доста често. Останалите са малко сложни, но в редица задачи са незаменими за опростяване на сложни изрази и изчисляване на техните стойности.

Често срещани случаи на логаритми

Някои от често срещаните логаритми са тези, при които основата е дори десет, експоненциална или две.
Логаритъмът по основа десет обикновено се нарича десетичен логаритъм и се означава просто с lg(x).

От записа става ясно, че основното не е написано в записа. Например

Натурален логаритъм е логаритъм, чиято основа е показател (обозначен с ln(x)).

Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой. Познавайки това правило, вие ще знаете както точната стойност на експонента, така и датата на раждане на Лев Толстой.

И друг важен логаритъм при основа две е означен с

Производната на логаритъма на функция е равна на единица, разделена на променливата

Интегралният или противопроизводният логаритъм се определя от връзката

Даденият материал е достатъчен, за да решите широк клас задачи, свързани с логаритми и логаритми. За да ви помогна да разберете материала, ще дам само няколко общи примера от училищна програмаи университети.

Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.
По свойството разлика на логаритмите имаме

3.
Използвайки свойства 3.5 намираме

4. Където .

Привидно сложен израз се опростява, за да се формира с помощта на редица правила

Намиране на логаритмични стойности

Пример 2. Намерете x if

Решение. За изчисление прилагаме към последния термин 5 и 13 свойства

Записваме го и скърбим

Тъй като основите са равни, приравняваме изразите

Логаритми. Първо ниво.

Нека е дадена стойността на логаритмите

Изчислете log(x), ако

Решение: Нека вземем логаритъм на променливата, за да запишем логаритъма чрез сумата от нейните членове


Това е само началото на нашето запознаване с логаритмите и техните свойства. Практикувайте изчисления, обогатете практическите си умения - скоро ще имате нужда от знанията, които придобивате, за решаване на логаритмични уравнения. След като изучихме основните методи за решаване на такива уравнения, ние ще разширим знанията ви за още не по-малко важна тема- логаритмични неравенства...

Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Задача. Намерете стойността на израза: log6 4 + log6 9.

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много тестове се основават на този факт. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Сега нека усложним малко задачата. Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм.

Как се решават логаритми

Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя. Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като продуктът не се променя при пренареждане на множители, ние спокойно умножихме четири и две и след това се занимавахме с логаритми.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

Обърнете внимание, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица, логаритъма е равен на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Основните свойства на естествения логаритъм, графика, дефиниционна област, набор от стойности, основни формули, производна, интеграл, разширение в степенни редовеи представяне на функцията ln x с помощта на комплексни числа.

Определение

Натурален логаритъме функцията y = в х, обратно на експоненциала, x = e y, и е логаритъм при основата на числото e: ln x = log e x.

Натуралният логаритъм се използва широко в математиката, тъй като неговата производна има най-простата форма: (ln x)′ = 1/ x.

Базиран дефиниции, основата на естествения логаритъм е числото д:
e ≅ 2,718281828459045...;
.

Графика на функцията y = в х.

Графика на натурален логаритъм (функции y = в х) се получава от експоненциалната графика чрез огледално отражение спрямо правата линия y = x.

Натуралният логаритъм е дефиниран при положителни стойностипроменлива x. Той се увеличава монотонно в своята област на дефиниране.

При x → 0 границата на естествения логаритъм е минус безкрайност (-∞).

Когато x → + ∞, границата на естествения логаритъм е плюс безкрайност (+ ∞). За голямо x логаритъма нараства доста бавно. Всякакви степенна функция x a с положителен показател a расте по-бързо от логаритъма.

Свойства на естествения логаритъм

Област на дефиниране, набор от стойности, екстремуми, нарастване, намаляване

Натуралният логаритъм е монотонно нарастваща функция, така че няма екстремуми. Основните свойства на натуралния логаритъм са представени в таблицата.

ln x стойности

ln 1 = 0

Основни формули за естествени логаритми

Формули, следващи от дефиницията на обратната функция:

Основното свойство на логаритмите и последствията от него

Формула за заместване на основата

Всеки логаритъм може да бъде изразен чрез естествени логаритми, като се използва формулата за заместване на основата:

Доказателствата на тези формули са представени в раздела "Логаритъм".

Обратна функция

Обратният на естествения логаритъм е степента.

Ако , тогава

Ако, тогава.

Производна ln x

Производна на натурален логаритъм:
.
Производна на натурален логаритъм от модул x:
.
Производна от n-ти ред:
.
Извличане на формули >>>

Интеграл

Интегралът се изчислява чрез интегриране по части:
.
Така,

Изрази, използващи комплексни числа

Разгледайте функцията на комплексната променлива z:
.
Нека изразим комплексната променлива zчрез модул rи аргумент φ :
.
Използвайки свойствата на логаритъма, имаме:
.
Или
.
Аргументът φ не е еднозначно дефиниран. Ако поставите
, където n е цяло число,
ще бъде едно и също число за различни n.

Следователно натуралният логаритъм, като функция на комплексна променлива, не е еднозначна функция.

Разширение на степенни редове

Когато се извършва разширяването:

Препратки:
И.Н. Бронщайн, К.А. Семендяев, Наръчник по математика за инженери и студенти, “Лан”, 2009 г.

И така, имаме степени на две. Ако вземете числото от долния ред, можете лесно да намерите степента, до която ще трябва да повишите две, за да получите това число. Например, за да получите 16, трябва да повдигнете две на четвърта степен. И за да получите 64, трябва да повдигнете две на шеста степен. Това се вижда от таблицата.

А сега - всъщност дефиницията на логаритъма:

Основният логаритъм от x е степента, на която a трябва да се повдигне, за да се получи x.

Обозначение: log a x = b, където a е основата, x е аргументът, b е действително равен на логаритъма.

Например 2 3 = 8 ⇒ log 2 8 = 3 (логаритъмът с основа 2 на 8 е три, защото 2 3 = 8). Със същия успех регистрирайте 2 64 = 6, тъй като 2 6 = 64.

Операцията за намиране на логаритъм на число спрямо дадена основа се нарича логаритмиране. И така, нека добавим нов ред към нашата таблица:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1log 2 4 = 2 log 2 8 = 3log 2 16 = 4 log 2 32 = 5log 2 64 = 6

За съжаление, не всички логаритми се изчисляват толкова лесно. Например опитайте да намерите log 2 5 . Числото 5 го няма в таблицата, но логиката подсказва, че логаритъма ще лежи някъде в сегмента. Защото 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такива числа се наричат ​​ирационални: числата след десетичната запетая могат да се записват безкрайно и никога не се повтарят. Ако логаритъмът се окаже ирационален, по-добре е да го оставите така: log 2 5, log 3 8, log 5 100.

Важно е да се разбере, че логаритъмът е израз с две променливи (основа и аргумент). В началото много хора бъркат къде е основата и къде аргументът. За да избегнете досадни недоразумения, просто погледнете снимката:

Пред нас не е нищо повече от определението на логаритъм. Помня: логаритъмът е степен, в който трябва да се вгради базата, за да се получи аргумент. Това е основата, която е повдигната на степен - тя е подчертана в червено на снимката. Оказва се, че основата винаги е на дъното! Казвам на моите ученици това прекрасно правило още на първия урок - и не възниква объркване.

Разбрахме определението - остава само да се научим да броим логаритми, т.е. отървете се от знака "дневник". Като начало отбелязваме, че от определението следват два важни факта:

  1. Аргументът и основата винаги трябва да са по-големи от нула. Това следва от дефиницията на степен чрез рационален показател, до който се свежда дефиницията на логаритъм.
  2. Базата трябва да е различна от едно, тъй като едното във всяка степен си остава едно. Поради това въпросът „на каква сила трябва да се издигне човек, за да получи две“ е безсмислен. Няма такава степен!

Такива ограничения се наричат регион приемливи стойности (ODZ). Оказва се, че ODZ на логаритъма изглежда така: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Имайте предвид, че няма ограничения за числото b (стойността на логаритъма). Например логаритъма може да е отрицателен: log 2 0,5 = −1, защото 0,5 = 2 −1.

Сега обаче разглеждаме само числови изрази, където не се изисква да знаем VA на логаритъма. Всички ограничения вече са взети предвид от авторите на задачите. Но когато си отидат логаритмични уравненияи неравенства, изискванията на DHS ще станат задължителни. В крайна сметка базата и аргументът може да съдържат много силни конструкции, които не отговарят непременно на горните ограничения.

Сега нека да разгледаме общата схема за изчисляване на логаритми. Състои се от три стъпки:

  1. Изразете основата a и аргумента x като степен с минималната възможна основа, по-голяма от единица. По пътя е по-добре да се отървете от десетичните знаци;
  2. Решете уравнението за променлива b: x = a b ;
  3. Полученото число b ще бъде отговорът.

Това е всичко! Ако логаритъма се окаже ирационален, това ще се види още на първата стъпка. Изискването базата да е по-голяма от единица е много важно: това намалява вероятността от грешка и значително опростява изчисленията. Същото с десетични знаци: ако веднага ги конвертирате в обикновени, ще има много по-малко грешки.

Нека видим как работи тази схема, използвайки конкретни примери:

Задача. Изчислете логаритъма: log 5 25

  1. Нека си представим основата и аргумента като степен на пет: 5 = 5 1 ; 25 = 5 2 ;
  2. Нека съставим и решим уравнението:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Получихме отговор: 2.

Задача. Изчислете логаритъма:

Задача. Изчислете логаритъма: log 4 64

  1. Нека си представим основата и аргумента като степен на две: 4 = 2 2 ; 64 = 2 6 ;
  2. Нека съставим и решим уравнението:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Получихме отговор: 3.

Задача. Изчислете логаритъма: log 16 1

  1. Нека си представим основата и аргумента като степен на две: 16 = 2 4 ; 1 = 20;
  2. Нека съставим и решим уравнението:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Получихме отговор: 0.

Задача. Изчислете логаритъма: log 7 14

  1. Нека си представим основата и аргумента като степен на седем: 7 = 7 1 ; 14 не може да бъде представено като степен на седем, тъй като 7 1< 14 < 7 2 ;
  2. От предходния параграф следва, че логаритъма не се брои;
  3. Отговорът е без промяна: log 7 14.

Малка забележка към последния пример. Как можете да сте сигурни, че едно число не е точна степен на друго число? Много е просто - просто го разложете на прости множители. Ако разширението има поне два различни фактора, числото не е точна степен.

Задача. Разберете дали числата са точни степени: 8; 48; 81; 35; 14 .

8 = 2 · 2 · 2 = 2 3 - точна степен, т.к има само един множител;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не е точна степен, тъй като има два фактора: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точна степен;
35 = 7 · 5 - отново не е точна степен;
14 = 7 · 2 - отново не е точна степен;

Забележете също, че самите прости числа винаги са точни степени на себе си.

Десетичен логаритъм

Някои логаритми са толкова често срещани, че имат специално име и символ.

Десетичният логаритъм от x е логаритъмът при основа 10, т.е. Степента, на която трябва да се повдигне числото 10, за да се получи числото x. Обозначение: lg x.

Например, log 10 = 1; lg 100 = 2; lg 1000 = 3 - и т.н.

Отсега нататък, когато в учебника се появи фраза като „Намери lg 0.01“, знайте, че това не е печатна грешка. Това е десетичен логаритъм. Ако обаче не сте запознати с тази нотация, винаги можете да я пренапишете:
log x = log 10 x

Всичко, което е вярно за обикновените логаритми, е вярно и за десетичните логаритми.

Натурален логаритъм

Има още един логаритъм, който има свое собствено обозначение. В някои отношения това е дори по-важно от десетичната запетая. Говорим за натурален логаритъм.

Натуралният логаритъм от x е логаритъмът по основа e, т.е. степента, на която трябва да се повдигне числото e, за да се получи числото x. Обозначение: ln x .

Мнозина ще попитат: какво е числото e? Това е ирационално число, точната му стойност не може да бъде намерена и записана. Ще дам само първите цифри:
e = 2,718281828459...

Няма да навлизаме в подробности какво представлява този номер и защо е необходим. Само не забравяйте, че e е основата на естествения логаритъм:
ln x = log e x

Така ln e = 1; ln e 2 = 2; ln e 16 = 16 - и т.н. От друга страна, ln 2 е ирационално число. Като цяло, естественият логаритъм на който и да е рационално числоирационален. Освен, разбира се, за единица: ln 1 = 0.

За естествените логаритми са валидни всички правила, които са валидни за обикновените логаритми.