Чем компенсируется у змей слабое развитие зрения и слуха. Зрение змей Можно «обезопасить» змею, вырвав ей зубы

Органы, позволяющие змеям «видеть» тепловое излучение, дают крайне расплывчатое изображение. Тем не менее у змеи в мозгу формируется четкая тепловая картина окружающего мира. Немецкие исследователи выяснили, как такое может быть.

Некоторые виды змей обладают уникальной способностью улавливать тепловое излучение, позволяющей им «разглядывать» окружающий мир в абсолютной темноте. Правда, они «видят» тепловое излучение не глазами, а специальными чувствительными к теплу органами (см. рисунок).

Строение такого органа очень просто. Рядом с каждым глазом располагается отверстие диаметром около миллиметра, которое ведет в небольшую полость примерно такого же размера. На стенках полости расположена мембрана, содержащая матрицу из клеток-терморецепторов размером примерно 40 на 40 клеток. В отличие от палочек и колбочек сетчатки глаза, эти клетки реагируют не на «яркость света» тепловых лучей, а на локальную температуру мембраны.

Этот орган работает как камера-обскура, прототип фотоаппаратов. Мелкое теплокровное животное на холодном фоне испускает во все стороны «тепловые лучи» — далекое инфракрасное излучение с длиной волны примерно 10 микрон. Проходя через дырочку, эти лучи локально нагревают мембрану и создают «тепловое изображение». Благодаря высочайшей чувствительности клеток-рецепторов (детектируется разница температур в тысячные доли градуса Цельсия!) и неплохому угловому разрешению, змея может заметить мышь в абсолютной темноте с довольно большого расстояния.

С точки зрения физики как раз хорошее угловое разрешение и представляет собой загадку. Природа оптимизировала этот орган так, чтобы лучше «видеть» даже слабые источники тепла, то есть попросту увеличила размер входного отверстия — апертуры. Но чем больше апертура, тем более размытое получается изображение (речь идет, подчеркнем, про самое обычное отверстие, безо всяких линз). В ситуации со змеями, где апертура и глубина камеры примерно равны, изображение оказывается настолько размытым, что из него ничего, кроме «где-то поблизости есть теплокровное животное», извлечь нельзя. Тем не менее опыты со змеями показывают, что они могут определять направление на точечный источник тепла с точностью около 5 градусов! Как же змеям удается достичь столь высокого пространственного разрешения при таком ужасном качестве «инфракрасной оптики»?

Раз реальное «тепловое изображение», говорят авторы, сильно размыто, а «пространственная картина», возникающая у животного в мозгу, довольно четкая, значит существует некий промежуточный нейроаппарат на пути от рецепторов к мозгу, который как бы настраивает резкость изображения. Этот аппарат не должен быть слишком сложным, иначе змея очень долго «обдумывала» бы каждое полученное изображение и реагировала бы на стимулы с запаздыванием. Более того, по мнению авторов этот аппарат вряд ли использует многоступенчатые итеративные отображения, а является, скорее, каким-то быстрым одношаговым преобразователем, работающим по навсегда зашитой в нервную систему программе.

В своей работе исследователи доказали, что такая процедура возможна и вполне реальна. Они провели математическое моделирование того, как возникает «тепловое изображение», и разработали оптимальный алгоритм многократного улучшения его четкости, окрестив его «виртуальной линзой».

Несмотря на громкое название, использованный ими подход, конечно, не является чем-то принципиально новым, а всего лишь разновидность деконволюции — восстановления изображения, испорченного неидеальностью детектора. Это процедура, обратная смазыванию картинки, и она широко применяется при компьютерной обработке изображений.

В проведенном анализе, правда, был важный нюанс: закон деконволюции не требовалось угадывать, его можно было вычислить исходя из геометрии чувствительной полости. Иными словами, было заранее известно, какое конкретно изображение даст точечный источник света в любом направлении. Благодаря этому совершенно размытое изображение можно было восстановить с очень хорошей точностью (обычные графические редакторы со стандартным законом деконволюции с этой задачей бы и близко не справились). Авторы предложили также конкретную нейрофизиологическую реализацию этого преобразования.

Сказала ли эта работа какое-то новое слово в теории обработки изображений — вопрос спорный. Однако она, несомненно, привела к неожиданным выводам касательно нейрофизиологии «инфракрасного зрения» у змей. Действительно, локальный механизм «обычного» зрения (каждый зрительный нейрон снимает информацию со своей маленькой области на сетчатке) кажется столь естественным, что трудно представить что-то сильно иное. А ведь если змеи действительно используют описанную процедуру деконволюции, то каждый нейрон, дающий свой вклад в цельную картину окружающего мира в мозгу, получает данные вовсе не из точки, а из целого кольца рецепторов, проходящего по всей мембране. Можно только удивляться, как природа умудрилась сконструировать такое «нелокальное зрение», компенсирующее дефекты инфракрасной оптики нетривиальными математическими преобразованиями сигнала.

Показать комментарии (30)

Свернуть комментарии (30)

    Почему-то мне кажется, что обратное преобразование размытой картинки, при условии, что есть лишь двумерный массив пикселей, математически невозможно. Насколько я понимаю, компьютерные алгоритмы повышения резкости просто создают субъективную иллюзию более резкого изображения, но они не могут раскрыть того, что замыто на изображении.

    Разве не так?

    Кроме того, непонятна логика, из которой следует, что сложный алгоритм заставлял бы змею задумываться. Насколько мне известно, мозг -- это параллельный компьютер. Сложный алгоритм в нём не обязательно приводит к увеличеню временнЫх затрат.

    Мне кажется, что процесс точнения должен быть иным. Как была установлена точность работы инфракрасных глаз? Наверняка, по какому-либо действию змеи. Но любое действие продолжительно и допускает коррекцию в своём процессе. На мой взгляд, змея может "инфравидеть" с той точностью, которая и ожидается и начинать движение, исходя из этой информации. Но потом, в процессе движения, постоянно её уточнять и приходить к финалу так, словно общая точность была выше.

    Ответить

    • Отвечаю по пунктам.

      1. Обратное преобразование -- это резкой получение картинки (какую создавал бы объект с линзой типа глаза), исходя из имеющейся размытой. При этом обе картинки -- двумерные, проблем с этим никаких нет. Если нет никаких необратимых искажений при размытии (типа совершенно непрозрачный заслон или насыщение сигнала в каком-то пикселе), то размытие можно представить себе как обратимый оператор, действующий в пространстве двумерных картинок.

      Там есть технические трудности с учетом шумов, так что оператор деконволюции выглядит чуть сложнее, чем описано выше, но тем не менее выводится однозначно.

      2. Компьютерные алгоритмы улучшают резкость, предполагая что размытие было по гауссиане. Они ведь не знают детально тех аберраций и т.п., котрые были у снимавшей камеры. Специальные программы, правда, способны на большее. Например если при анализе снимков звездного неба
      в кадр попадает звезда, то с ее помощью можно восстановить резкость лучше, чем стандатрными методами.

      3. Сложный алгоритм обработки -- это имелось в виду многоэтапный. В принципе, обрабатывать изображения можно итеративно, пуская по одной и той же простой цепочке изображение снова и снова. Асимптотически оно тогда может стретиться к какому-то "идеальному" изображению. Так вот, авторы показывают, что такая обработка, по меньшей мере, не является необходимой.

      4. Деталей экспериментов со змеями я не знаю, надо будет почитать.

      Ответить

      • 1. Я этого не знал. Мне казалось, что размытие (недостаточная резкозть) -- это необратимое преобразование. Допустим, на изображении объективно присутствует некое размытое облако. Как система узнает, что это облако не надо делать резким и что это его истинное состояние?

        3. На мой взгляд, итеративное преобразование можно реализовать сделав просто несколько последовательно подключённых слоёв нейронов и тогда преобразование будет проходить за один шаг, но быть итеративным. Сколько нужно итераций, столько и сделать слоёв.

        Ответить

        • Вот простой пример размытия. Дан набор значений (x1,x2,x3,x4).
          Глаз видит не этот набор, а набор (y1,y2,y3,y4), получающийся таким образом:
          y1 = x1 + x2
          y2 = x1 + x2 + x3
          y3 = x2 + x3 + x4
          y4 = x3 + x4

          Очевидно, если вы заранее знаете закон размытия, т.е. линейный оператор (матрицу) перехода от иксов к игрекам, то вы можете сосчитать обратную матрицу перехода (закон деконволюции) и по заданным игрекам восстановить иксы. Если, конечно, матрица обратима, т.е. нет необратимых искажений.

          Про несколько слоев -- конечно, отмести такой вариант нельзя, но это кажется так неэкономно и так легко нарушимо, что вряд ли стоит ожидать, что эволюция выберет этот путь.

          Ответить

          "Очевидно, если вы заранее знаете закон размытия, т.е. линейный оператор (матрицу) перехода от иксов к игрекам, то вы можете сосчитать обратную матрицу перехода (закон деконволюции) и по заданным игрекам восстановить иксы. Если, конечно, матрица обратима, т.е. нет необратимых искажений." Не путайте математику с измерениями. Маскировка младшего заряда погрешностями достаточно не линейна, чтоб испортить результат обратной операции.

          Ответить

    • "3. На мой взгляд, итеративное преобразование можно реализовать сделав просто несколько последовательно подключённых слоёв нейронов и тогда преобразование будет проходить за один шаг, но быть итеративным. Сколько нужно итераций, столько и сделать слоёв." Нет. Следующий слой начинает обработку ПОСЛЕ предыдущего. Конвейер не позволяет ускорить обработку конкретной порции информации, кроме случаев, когда применяется ради того, чтоб каждую операцию поручить специализированному исполнителю. Он позволяет начинать обработку СЛЕДУЮЩЕГО КАДРА до того, как обработан предыдущий.

      Ответить

"1. Обратное преобразование -- это резкой получение картинки (какую создавал бы объект с линзой типа глаза), исходя из имеющейся размытой. При этом обе картинки -- двумерные, проблем с этим никаких нет. Если нет никаких необратимых искажений при размытии (типа совершенно непрозрачный заслон или насыщение сигнала в каком-то пикселе), то размытие можно представить себе как обратимый оператор, действующий в пространстве двумерных картинок." Нет. Размытие - это уменьшение количества информации, создать её заново невозможно. Можно увеличить контраст, но если это не сводится к настройке гаммы, то только ценой шума. При размытии любой пиксел усредняется по соседним. СО ВСЕХ СТОРОН. После этого не известно, откуда именно в его яркость что то добавилось. То ли слева, то ли справа, то ли сверху, то ли снизу, то ли по диагонали. Да, направление градиента говорит о том, откуда шла основная добавка. Ни инфы в этом ровно столько же, как в самой размытой картинке. То есть разрешение низкое. А мелочи только ещё лучше маскируются шумом.

Ответить

Мне кажется, что авторы эксперимента просто "наплодили лишние сущности". Разве в реальной среде обитания змей бывает абсолютная темнота? - насколько мне известно, нет. А если абсолютной темноты нет, то даже самой размытой "инфракрасной картинки" более чем достаточно, вся ее "функция" - дать команду начать охоту "приблизительно в таком-то направлении", а дальше в дело вступает самое обычное зрение. Авторы эксперимента ссылаются на слишком большую точность выбора направления - 5 градусов. Но разве это действительно большая точность? По-моему, ни в каких условиях - ни в реальной среде, ни в лабораторных - с такой "точностью" охота не увенчается успехом (если змея будет ориентироваться только так). Если же говорить о невозможности даже такой "точности" из-за слишком примитивного устройства обработки инфракрасного излучения, то и тут, по-видимому, можно не согласиться с немцами: у змеи два таких "устройства", а это дает ей возможность "с ходу" определить "право", "лево" и "прямо" с дальнейшей постоянной коррекцией направления вплоть до момента "визуального контакта". Но даже если у змеи только одно такое "устройство", то и в этом случае она с легкостью будет определять направление - по разности температуры на разных участках "мембраны" (не даром ведь она улавливает изменения в тысячные доли градуса по Цельсию, для чего-то это нужно!) Очевидно, находящийся "прямо" объект будет "отображаться" картинкой более или менее равной интенсивности, находящийся "слева" - картинкой с большей интенсивностью правой "части", находящийся "справа" - картинкой с большей интенсивностью левой части. Только и всего. И не нужно никаких сложных немецких нововведений в выработавшуюся за миллионы лет змеиную природу:)

Ответить

"Мне кажется, что процесс точнения должен быть иным. Как была установлена точность работы инфракрасных глаз? Наверняка, по какому-либо действию змеи. Но любое действие продолжительно и допускает коррекцию в своём процессе. На мой взгляд, змея может "инфравидеть" с той точностью, которая и ожидается и начинать движение, исходя из этой информации. Но потом, в процессе движения, постоянно её уточнять и приходить к финалу так, словно общая точность была выше." Вот только помесь балометра со светорегистрирующей матрицей и так то очень инерционна, а от тепла мыши откровенно тормозит. А бросок змеи на столько стремителен, что и зрение на колбочках с палочками не успевает. Ну может и не по вине непосредственно колбочек, там и аккомодация хрусталика тормозит, и обработка. Но даже вся система работает быстрей и всё равно не успевает. Единственное возможное решение при таких датчиках - все решения принять заранее, используя тот факт, что до броска времени достаточно.

Ответить

"Кроме того, непонятна логика, из которой следует, что сложный алгоритм заставлял бы змею задумываться. Насколько мне известно, мозг -- это параллельный компьютер. Сложный алгоритм в нём не обязательно приводит к увеличеню временнЫх затрат." Для распараллелизации сложного алгоритма нужно много узлов, они имеют приличные размеры и тормозят уже из-за медленного прохождения сигналов. Да, это не повод отказываться от параллелизма, но если требования совсем уж жёсткие, то единственный способ уложиться по времени при параллельной обработке больших массивов - юзать на столько простые узлы, что обмениваться промежуточными результатами между собой они не могут. А это требует захардить весь алгоритм, так как принимать решения они уже не смогут. И последовательно тоже получится обработать много информации в единственном случае - если единственный процессор работает быстро. А это тоже требует хардить алгоритм. Уровень реализации хардовый так и так.

Ответить

>Немецкие исследователи выяснили, как такое может быть.



но воз, кажется, и ныне там.
Можно сходу предложить пару алгоритмов, которые, возможно, будут решать вопрос. Но будут ли они иметь отношение к реальности?

Ответить

  • > Хотелось бы хотя бы косвенных подтверждений, что оно именно так, а не иначе.

    Конечно, авторы осторожны в высказываниях и не говорят, что они доказали, что именно так и функционирует инфразрение у змей. Они лишь доказали, что для разрешения "парадокса инфразрения" не требуется слишком больших вычислительных ресурсов. Они лишь надеются, что похожим образом работает орган змей. Так это или нет на самом деле, должны доказать физиологи.

    Ответить

    > Есть т.н. байндинг проблема, которая заключается в том каким образом человек и животное понимают, что ощущения в различных модальностях (зрение, слух, тепло и пр.) относятся к одному и тому же источнику.

    На мой взгляд, в мозгу существует целостная модель реального мира, а не отдельные осколки-модальности. Например, в мозгу совы существует объект "мышь", в котором есть как бы соответствующие поля, в которых хранится информация о том, как мышь выглядит, как она слышна, как пахнет и так далее. Во время восприятия происходит конвертация стимулов в термины этой модели, то есть, создаётся объект "мышь", его поля заполняются писком и обликом.

    То есть, вопрос ставится не так, как сова понимает, что и писк и запах относятся к одному источнику, а как сова ПРАВИЛЬНО понимает отдельные сигналы?

    Методом узнавания. Даже сигналы одной и той же модальности не так-то легко отнести к одному объекту. Например, мышиный хвост и мышиные уши вполне могли бы быть отдельными предметами. Но сова видит их не отдельно, а как части целой мыши. Всё дело в том, что у неё в голове есть прообраз мыши, с которым она сопоставляет части. Если части "ложатся" на прообраз, то они составляют целое, если не ложатся, то не составляют.

    Это легко понять на собственном примере. Рассмотрим слово "УЗНАВАНИЕ". Посмотрим на него внимательно. Фактически, это просто совокупность букв. Даже просто совокупность пикселей. Но мы не можем этого увидеть. Слово нам знакомо и потому сочетание букв неизбежно вызывает у нас в мозгу цельный образ, от которого прямо-таки невозможно отделаться.

    Так же и сова. Она видит хвостик, видит ушки, примерно в некотором направлении. Видит характерные движения. Слышит шуршание и писк примерно из этого же направления. Чувствует особый запах с той стороны. И это знакомое сочетание стимулов, точно так же как для нас знакомое сочетание букв, вызывает у неё в мозгу образ мыши. Образ цельный, расположенный в цельном образе окружающего пространства. Образ существует независимо и, по мере совиных наблюдений, может очень сильно уточняться.

    Думаю, тоже самое происходит и со змеёй. И как в такой ситуации можно вычислить точность одного только зрительного или инфразрительного анализатора, мне непонятно.

    Ответить

    • Как мне кажется, узнавание образа -- это уже иной процесс. Речь идет не про реакцию змеи на образ мышки, а о превращении пятен в инфраглазу в образ мышки. Теоретически, можно представить ситуацию, что змея вообще не инфравидит мышку, а сразу кидается в определенном направлении, если ее инфраглаз увидит кольцевые круги определенной формы. Но это кажется маловероятным. Ведь ОБЫЧНЫМИ-то глазами земя видит именно профиль мышки!

      Ответить

      • Мне кажется, что может происходить следующее. Возникает плохое изображение на инфрасетчатке. Оно преобразуется в расплывчатый образ мышки, достаточный для того, чтобы змея мышку опознала. Но в этом образе нет ничего "чудесного", он адекватен способностям инфраглаза. Змея начинает приблизительный бросок. В процессе броска её голова движется, инфраглаз смещается относительно цели и в общем приближается к ней. Образ в голове постоянно дополняется и его пространственное положение уточняется. А движение постоянно корректируется. В итоге финал броска выглядит так, словно бросок был основан на невероятно точной информации о положении цели.

        Это мне напоминает наблюдение за собой, когда я иногда могу поймать упавший стакан прям как нидзя:) А секрет в том, что так поймать я могу только тот стакан, который я сам и уронил. То есть, я точно знаю, что стакан надо будет ловить и начинаю движение заранее, корректируя его в самом процессе.

        Я читал также, что аналогичные выводы были сделаны из наблюдений за человеком в невесомости. Когда человек нажимает кнопку в невесомости, он должен промахнуться вверх, так как привычные для весящей руки усилия некорректны для невесомости. Но человек не промахивается (если он внимателен), именно из-за того, что в наши движения постоянное втроена возможность коррекции "на лету".

        Ответить

"Есть т.н. байндинг проблема, которая заключается в том каким образом человек и животное понимают, что ощущения в различных модальностях (зрение, слух, тепло и пр.) относятся к одному и тому же источнику.
Есть множество гипотез http://www.dartmouth.edu/~adinar/publications/binding.pdf
но воз, кажется, и ныне там.
Можно сходу предложить пару алгоритмов, которые, возможно, будут решать вопрос. Но будут ли они иметь отношение к реальности?" А вот это похоже. Не реагировать на холодные листья, как бы они ни двигались и ни выглядели, но при наличии тёплой мыши где то там атаковать то, что и в оптике похоже на мышь и при этом попадает в область. Или же нужна какая то очень уж дикая обработка. Не в смысле длинного последовательного алгоритма, а в смысле умения нарисовать узоры на ногтях дворницкой метлой. Некоторые азиаты даже это умеют хардить так, что успевают миллиарды транзисторов делать. И тот ещё датчик.

Ответить

>в мозгу существует целостная модель реального мира, а не отдельные осколки-модальности.
Вот и еще одна гипотеза.
Ну как же без модели? Без модели никак.Конечно, возможно и простое узнавание в знакомой ситуации. Но, например, впервые попав в цех, где работают тысячи станков человек способен выделить звук одного конкретного станка.
Неприятность может заключаться в том, что разные люди используют разные алгоритмы. И даже один человек может пользоваться разными алгоритмами в разных ситуациях. Со змеями, кстати, такое тоже не исключено. Правда, эта крамольная мысль может стать надгробным камнем статистическим медодам исследования. Чего психология не перенесет.

По моему, такие умозрительные статьи имеют право на существование, но нужно хотябы довести до схемы эксперимента по проверке гипотезы. Например, исходя из модели расчитать возможные траектории движения змеи. А физиологи пусть сравнивают их с реальными. Если поймут о чем речь.
Иначе, как с байндинг проблемой. Когда я читаю очередную ничем не подкрепленную гипотезу, это вызывает только улыбку.

Ответить

  • > Вот и еще одна гипотеза.
    Странно, не думал, что эта гипотеза нова.

    В слюбом случае, она имеет подтверждения. Например, люди с ампутированными конечностями, часто утверждают, что продолжают их чувствовать. Ещё например, хорошие автомобилисты утверждают, что "чувствуют" края своей машины, расположение колёс и т.д.

    Это наводит на мысль, что никакой разницы между двумя случаями нет. В первом случае есть врождённая модель своего тела, а ощущения лишь наполняют её содержанием. Когда конечность удаляют, модель конечности ещё некоторое время существует и вызывает ощущения. Во втором случае есть приобретённая модель автомобиля. От автомобиля непосредственно сигналов в организм не поступает, а поступают косвенные сигналы. Но итог тот же: модель существует, наполняется содержанием и ощущается.

    Вот, кстати, хороший пример. Попросим автомобилиста наехать на камешек. Он наедет очень точно и даже скажет, наехал, или нет. Это значит, что он по вибрациям чувствует колесо. Следует ли из этого, что существует какой-то алгоритм "виртуальной вибролинзы", которая по вибрациям восстанавливает изображение колеса?

    Ответить

Довольно любопытно, что если источник света 1, и довольно сильный, то направление на него несложно определить даже с закрытыми глазами - надо поворачивать голову, пока свет не начнёт светить одинаково в оба глаза, и тогда свет спереди. Тут не надо придумывать некакие супер-пупер нейронные сети во восстановлению изображения - всё просто до ужаса, и вы можете это проверить сами.

Ответить

Написать комментарий

В качестве примера рассмотрим, как маркируется профильная труба квадратного сечения с размерами сторон мм и толщиной стенки 6 мм, изготовленная из стали СК: хх5 ГОСТ /СК ГОСТ Эксплуатационные характеристики и сферы применения квадратных труб.

Эксплуатационные характеристики, которыми обладают стальные трубы с квадратным профилем, определяются как материалом их изготовления, так и особенностями их конструкции, которая представляет собой замкнутый профиль, сформированный из металлической полосы. ГОСТ Межгосударственный стандарт. Профили стальные гнутые замкнутые сварные квадратные и прямоугольные для строительных конструкций. ГОСТ Прокат тонколистовой из углеродистой стали качественной и обыкновенного качества общего назначения.

Технические условия. ГОСТ Прокат тонколистовой из стали повышенной прочности. Технические условия. ГОСТ Прокат из стали повышенной прочности.

Общие технические условия. ГОСТ Прокат листовой горячекатаный. Действующий. ГОСТ Группа В МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ. Технические условия ГОСТ Прокат из стали повышенной прочности. Общие технические условия ГОСТ Прокат листовой горячекатаный. Сортамент ГОСТ Прокат для строительных стальных конструкций. Главная > Справочники > ГОСТ, ТУ, СТО > Трубы > Профильные трубы > ГОСТ ГОСТ Скачать. Профили стальные гнутые замкнутые сварные квадратные и прямоугольныедля строительных конструкций.

Технические условия. Steel bent closed welded square and rectangular section for building. Specifications. ГОСТ Прокат толстолистовой из углеродистой стали обыкновенного качества. Технические условия. ГОСТ Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения итранспортирования в части воздействия климатических факторов внешней среды. ГОСТ - Труба профильная прямоугольная и квадратная.

ГОСТ регламентирует основные требования к изготовлению замкнутых сварных профилей для строительных сооружений. Сортамент стальных квадратных труб включает основные размеры: Для квадратного профиля: от 40х40х2 до хх14 мм. Углеродистая сталь универсального применения. Низколегированная толстостенная сталь (от 3мм и более), согласно ТУ Устранение грата с продольных швов производится с наружной стороны конструкции, допускаются следующие отклонения: 0,5 мм – при сечении профильных стенок до 0,4 см.

ГОСТ Межгосударственный стандарт. Профили стальные гнутые замкнутые сварные квадратные и прямоугольные для строительных конструкций. Технические условия. Steel bent closed welded square and rectangular section for building. Specifications. Дата введения 1 Область применения. Технические условия ГОСТ Прокат тонколистовой из стали повышенной прочности. Технические условия ГОСТ Прокат из стали повышенной прочности.

Общие технические условия ГОСТ Прокат листовой горячекатаный. Сортамент ГОСТ Прокат для строительных стальных конструкций. Пофильная труба ГОСТ, ГОСТ Профильные трубы квадратных,овальных и прямоугольных сечений изготавливаются согласно сортамента.

Сортамент профильных труб соответствует: стандарту ГОСТ - (труба профильная общего назначения из углеродистой стали); - квадратных - ГОСТ - (труба профильная квадратная) ; - прямоугольных - ГОСТ - (труба профильная прямоугольная); - овальных - ГОСТ - (труба профильная овальная). Сварные профильные трубы применяются в строительстве, производстве металлоконструкций, в машиностроении и других отраслях промышленности. Труба профильная ГОСТ / Размеры.

Марка стали. Технические условия. Обозначение: ГОСТ Статус: действующий. Классификатор государственных стандартов → Металлы и металлические изделия → Сталь углеродистая обыкновенного качества → Сортовой и фасонный прокат.

Общероссийский классификатор продукции → Оборудование для регулирования дорожного движения, обслуживания сельхозтехники и вспомогательное средств связи, конструкции строительные металлические → Конструкции строительные стальные.

Categories Post navigation
Мои корлевский питон или питон-шар или питон региус (Python regius)

Помните фильм "Пестрая лента"? Там свистом подзывали змею, и потом шел разговор, что мол змеи глухи и так далее. Так вот - спешу сообщить, что змеи ни фига не глухие! Но, слышат они немного не так, точнее совсем не так как мы.
Вспоминаем курс биологии: орган слуха состоит из наружного уха, барабанной перепонки, к которой подсоединены косточки от одной до трех (зависит от вида животного) они передают сигнал в улитку, трехмерный закрученный спиралью орган, в котором есть ресничные клеточки, которые собственно и считывают звуковые колебания, за счет жидкости, улитку наполняющей. Ну вот как-то так. В чем же проблема змей? А у них нет барабанной перепонки, как и наружного органа слуха.


А вот улитка (голубая) и слуховая косточка (зеленая) - есть. И мало того, слуховая косточка (зеленая) присоединена к большой квадратной кости (синяя) Ну и зачем? Ааа... вот тут начинается самое интересное! Кость квадратная вместе с челюстью заменяет барабанную перепонку. Получается эдакий резонатор за счет системы рычагов, который воспринимает вибрацию от земли и волны низкой частоты. Змея вас слышит за несколько метров, даже если идти вы будете аккуратно и тихо. Но вот свистеть змее как в кино и правда без толку. А вот все низкие звуки которые слышим мы - они прекрасно различают. Скажем по своим змейсам я вижу как они вздрагивают от низкого гавка моих собак, и как чуют едущую тяжелую машину на улице, а сами мы на пятом этаже.

Что еще интересного у змей есть. А есть у них терморецепция. Это термоямки у гадюковых, питонов, удавов, некоторых странных африканских ужеобразных.

Вот вам термоямки хорошо видны у моего питона региуса (Python regius) на верхней челюсти

Самый совершенный термоаппарат, скажем так, это у ямкоголовых гадюк (Crotalinae ). Там внутри каждой ямки с несоклькими слоями мембран и кучй разных терморецепторов. Все они ужасно чувствительны! Нет, они не видят как тепловизор! Не верьте фильмам ВВС - никакого контура ничего там змея не разглядывает. В термоямках нет белка радопсина, там происходит считывание информации за счет ионных каналов в мембранах рецепторов! они показывают силу теплоизлучения объекта и направление к нему. Все.

Вообще, что ни говори: но по количеству органов чувств и их сложности, змея переплюнет почти любое наземное животное. В следующий раз расскажу вам как змеи видят и зачем высовывают язык.
Ну, а про иэволюцию их ядовитого аппарата - это вообще отдельная песня!

Змеи – одни из самых загадочных обитателей нашей планеты. Первобытные охотники при встрече с любой змеей спешили спастись от нее бегством, зная, что всего один укус способен обречь на смерть. Страх помогал избежать укусов, но мешал узнать больше об этих таинственных созданиях. И там, где точных знаний не хватало, пробелы заполняли фантазии и домыслы, с веками становившиеся все изощреннее. И, несмотря на то, что многие из этих рептилий уже достаточно хорошо изучены, старые, передававшиеся из поколения в поколения, слухи и легенды о змеях до сих пор владеют умами людей. Чтобы как-то разорвать этот порочный круг, мы собрали 10 самых распространенных мифов о змеях и опровергли их.

Змеи пьют молоко

Этот миф многим из нас стал известен благодаря произведению Конана Дойля «Пестрая лента». На самом деле попытка напоить змею молоком может закончиться смертельным исходом: они не усваивают лактозу в принципе.

Нападая, змеи жалят

По неизвестным причинам, многие люди считают, что змеи жалят своим острым, раздвоенным на конце языком. Змеи кусают зубами, как и все остальные животные. Язык им служит совершенно для других целей.

Змеи перед броском, угрожая, высовывают язык

Как уже говорилось, язык змеи не предназначен для атаки. Дело в том, что у змей отсутствует нос, и все необходимые рецепторы у них расположены на языке. Поэтому, чтобы лучше учуять запах добычи и определить ее месторасположение, змеям приходится высовывать язык.

Большинство змей ядовиты

Из известных серпентологам двух с половиной тысяч видов змей только 400 обладают ядовитыми зубами. Из них всего 9 встречаются в Европе. Больше всего ядовитых змей в Южной Америке – 72 вида. Остальные практически поровну распределились по Австралии, Центральной Африке, Юго-Восточной Азии, Центральной и Северной Америке.

Можно «обезопасить» змею, вырвав ей зубы

На какое-то время это действительно может сработать. Но зубы отрастут снова, а змея в период их роста не имея возможности сцеживать яд, может серьезно заболеть. И кстати говоря, змею не возможно надрессировать – для них любое человек не более чем просто теплое дерево.

Змеи всегда нападают при виде людей

Как показывает статистика, чаще всего змеи кусают людей в целях самообороны. Если змея при виде вас шипит и делает угрожающие движения – значит, она просто хочет, чтобы ее оставили в покое. Стоит вам немного отступить, и змея тут же скроется из вида, спеша спасти свою жизнь.

Змей можно кормить мясом

Большинство змей питаются грызунами, есть виды, поедающие лягушек и рыбу и даже насекомоядные рептилии. А королевские кобры, например, предпочитают в пищу только змей других видов. Так что, чем именно кормить змею, зависит только от самой змеи.

Змеи холодные на ощупь

Змеи являются типичными представителями хладнокровных животных. И поэтому температура тела змеи будет такой же, как и температура внешней среды. Поэтому, не имея возможности поддерживать оптимальную температуру тела (чуть выше 30 °С), змеи так любят греться на солнце.

Змеи покрыты слизью

Еще одна байка, не имеющая к змеям никакого отношения. Кожа этих рептилий практически не содержит желез и покрыта плотной гладкой чешуей. Именно из этой приятной на ощупь змеиной кожи изготавливают обувь, сумочки и даже одежду.

Змеи обвивают ветви и стволы деревьев

Довольно часто можно увидеть изображение змея-искусителя, обвивающего ствол дерева познания. Однако это не имеет никакого отношения к их реальному поведению. Змеи забираются на ветки деревьев и лежат на них, обвивать же их своим телом им совершенно ни к чему.

Справедливо говоря, змеи не так слепы, как принято считать. Их зрение сильно варьируется. Например, древесные змеи обладают достаточно острым зрением, а ведущие подземный образ жизни способны лишь отличить свет от тьмы. Но в массе своей они действительно подслеповаты. А в период линьки вообще могут во время охоты промахнуться. Это объясняется тем, что поверхность глаза у змеи покрыта прозрачной роговой оболочкой и в момент линьки также отделяется, и глаза мутнеют.

Однако недостаток зоркости змеи компенсируют органом тепловой чувствительности, позволяющим им отслеживать тепло, излучаемое добычей. А некоторые представители пресмыкающихся даже способны отследить направление источника тепла. Этот орган назвали термолокатором. По сути он позволяет змее «видеть» добычу в инфракрасном спектре и успешно охотиться даже ночью.

Слух змеи

В отношении слуха утверждение, что змеи глухих, справедливо. У них отсутствуют наружнее и среднее ухо и только внутреннее развито почти полностью.

Вместо органа слуха природа подарила змеям высокую вибрационную чувствительность. Поскольку они всем телом соприкасаются с землей, то очень остро ощущают малейшие вибрации. Впрочем, звуки змеи все-таки воспринимают, но в очень низком диапозоне частот.

Обоняние змеи

Главным органом чувств змей является их удивительно тонкое обоняние. Интересный нюанс: при погружении в воду или при зарывании в песок обе ноздри плотно закрываются. А что еще интересней - в процессе обоняния непосредственное участие принимает длинный раздвоенный на конце язык.

При сомкнутом рте он высовывается наружу через полукруглую вырезку в верхней челюсти, а во время глотания прячется в специальное мускульное влагалище. Частыми вибрациями языка змея захватывает микроскопические частицы пахучих веществ, словно берет пробу, и отправляет их в рот. Там она прижимает язык к двум ямкам на верхнем небе - органу Якобсона, который состоит из химически активных клеток. Именно этот орган сообщает змее химическую информацию о происходящем вокруг, помогая ей найти добычу или вовремя заметить хищника.

Необходимо отметить, что у змей, живущих в воде, язык столь же эффективно работает под водой.

Таким образом, змеи не используют язык для определения вкуса в прямом смысле. Он используется ими как дополнение к органу для определения запаха.