Геометрические фигуры. Пирамида

С понятием пирамида учащиеся сталкиваются еще задолго до изучения геометрии. Виной всему знаменитые великие египетские чудеса света. Поэтому, начиная изучение этого замечательного многогранника, большинство учеников уже наглядно представляют ее себе. Все вышеупомянутые достопримечательности имеют правильную форму. Что такое правильная пирамида , и какие свойства она имеет и пойдет речь дальше.

Вконтакте

Определение

Определений пирамиды можно встретить достаточно много. Начиная еще с древних времен, она пользовалась большой популярностью.

К примеру, Эвклид определял ее как телесную фигуру, состоящую из плоскостей, которые, начиная от одной, сходятся в определенной точке.

Герон представил более точную формулировку. Он настаивал на том, что это фигура, которая имеет основание и плоскости в виде треугольников, сходящиеся в одной точке.

Опираясь на современное толкование, пирамиду представляют, как пространственный многогранник, состоящий из определённого k-угольника и k плоских фигур треугольной формы, имеющую одну общую точку.

Разберемся более подробно, из каких элементов она состоит:

  • k-угольник считают основой фигуры;
  • фигуры 3-угольной формы выступают гранями боковой части;
  • верхняя часть, из которой берут начало боковые элементы, называют вершиной;
  • все отрезки, соединяющие вершину, называют рёбрами;
  • если из вершины на плоскость фигуры опустить прямую под углом в 90 градусов, то её часть, заключенная во внутреннем пространстве — высота пирамиды;
  • в любом боковом элементе к стороне нашего многогранника можно провести перпендикуляр, называемый апофемой.

Число рёбер вычисляется по формуле 2*k, где k – количество сторон k-угольника. Сколько граней у такого многогранника, как пирамида, можно определить посредством выражения k+1.

Важно! Пирамидой правильной формы называют стереометрическую фигуру, плоскость основы которой является k-угольник с равными сторонами.

Основные свойства

Правильная пирамида обладает множеством свойств, которые присущи только ей. Перечислим их:

  1. Основа – фигура правильной формы.
  2. Ребра пирамиды, ограничивающие боковые элементы, имеют равные числовые значения.
  3. Боковые элементы – равнобедренные треугольники.
  4. Основание высоты фигуры попадает в центр многоугольника, при этом он одновременно является центральной точкой вписанной и описанной .
  5. Все боковые рёбра наклонены к плоскости основы под одинаковым углом.
  6. Все боковые поверхности имеют одинаковый угол наклона по отношению к основе.

Благодаря всем перечисленным свойствам, выполнение вычислений элементов намного упрощается. Исходя из приведенных свойств, обращаем внимание на два признака:

  1. В том случае, когда многоугольник вписывается в окружность, боковые грани будут иметь с основой равные углы.
  2. При описании окружности около многоугольника, все рёбра пирамиды, исходящие из вершины, будут иметь равную длину и равные углы с основой.

В основе лежит квадрат

Правильная четырёхугольная пирамида – многогранник, у которого в основе лежит квадрат.

У неё четыре боковых грани, которые по своему виду являются равнобедренными.

На плоскости квадрат изображают , но основываются на всех свойствах правильного четырёхугольника.

К примеру, если необходимо связать сторону квадрата с его диагональю, то используют следующую формулу: диагональ равна произведению стороны квадрата на корень квадратный из двух.

В основе лежит правильный треугольник

Правильная треугольная пирамида – многогранник, в основании которого лежит правильный 3-угольник.

Если основание является правильным треугольником, а боковые рёбра равны ребрам основания, то такая фигура называется тетраэдром.

Все грани тетраэдра являются равносторонними 3-угольниками. В данном случае необходимо знать некоторые моменты и не тратить на них время при вычислениях:

  • угол наклона ребер к любому основанию равен 60 градусов;
  • величина всех внутренних граней также составляет 60 градусов;
  • любая грань может выступить основанием;
  • , проведённые внутри фигуры, это равные элементы.

Сечения многогранника

В любом многограннике различают несколько видов сечения плоскостью. Зачастую в школьном курсе геометрии работают с двумя:

  • осевое;
  • параллельное основе.

Осевое сечение получают при пересечении плоскостью многогранника, которая проходит через вершину, боковые рёбра и ось. В данном случае осью является высота, проведённая из вершины. Секущая плоскость ограничивается линиями пересечения со всеми гранями, в результате получаем треугольник.

Внимание! В правильной пирамиде осевым сечением является равнобедренный треугольник.

Если секущая плоскость проходит параллельно основанию, то в результате получаем второй вариант. В этом случае имеем в разрезе фигуру, подобную основе.

К примеру, если в основании лежит квадрат, то сечение параллельно основе также будет квадратом, только меньших размеров.

При решении задач при таком условии используют признаки и свойства подобия фигур, основанные на теореме Фалеса . В первую очередь необходимо определить коэффициент подобия.

Если плоскость проведена параллельно основе, и она отсекает верхнюю часть многогранника, то в нижней части получают правильную усеченную пирамиду. Тогда говорят, что основы усеченного многогранника являются подобными многоугольниками. В этом случае боковые грани являются равнобокими трапециями. Осевым сечением также является равнобокая .

Для того чтобы определить высоту усеченного многогранника, необходимо провести высоту в осевом сечении, то есть в трапеции.

Площади поверхностей

Основные геометрические задачи, которые приходится решать в школьном курсе геометрии, это нахождение площадей поверхности и объема у пирамиды.

Значение площади поверхности различают двух видов:

  • площади боковых элементов;
  • площади всей поверхности.

Из самого названия понятно, о чём идёт речь. Боковая поверхность включает в себя только боковые элементы. Из этого следует, что для ее нахождения необходимо просто сложить площади боковых плоскостей, то есть площади равнобедренных 3-угольников. Попробуем вывести формулу площади боковых элементов:

  1. Площадь равнобедренного 3-угольника равна Sтр=1/2(aL), где а – сторона основания, L – апофема.
  2. Количество боковых плоскостей зависит от вида k-го угольника в основании. К примеру, правильная четырехугольная пирамида имеет четыре боковые плоскости. Следовательно, необходимо сложить площади четырёх фигур Sбок=1/2(aL)+1/2(aL)+1/2(aL)+1/2(aL)=1/2*4а*L. Выражение упрощено таким способом потому, что значение 4а=Росн, где Росн – периметр основы. А выражение 1/2*Росн является её полупериметром.
  3. Итак, делаем вывод, что площадь боковых элементов правильной пирамиды равна произведению полупериметра основания на апофему: Sбок=Росн*L.

Площадь полной поверхности пирамиды состоит из суммы площадей боковых плоскостей и основания: Sп.п.= Sбок+Sосн.

Что касается площади основания, то здесь формула используется соответственно виду многоугольника.

Объем правильной пирамиды равен произведению площади плоскости основания на высоту, разделенную на три: V=1/3*Sосн*Н, где Н – высота многогранника.

Что такое правильная пирамиды в геометрии

Свойства правильной четырехугольной пирамиды

Определение

Пирамида – это многогранник, составленный из многоугольника \(A_1A_2...A_n\) и \(n\) треугольников с общей вершиной \(P\) (не лежащей в плоскости многоугольника) и противолежащими ей сторонами, совпадающими со сторонами многоугольника.
Обозначение: \(PA_1A_2...A_n\) .
Пример: пятиугольная пирамида \(PA_1A_2A_3A_4A_5\) .

Треугольники \(PA_1A_2, \ PA_2A_3\) и т.д. называются боковыми гранями пирамиды, отрезки \(PA_1, PA_2\) и т.д. – боковыми ребрами , многоугольник \(A_1A_2A_3A_4A_5\) – основанием , точка \(P\) – вершиной .

Высота пирамиды – это перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида, в основании которой лежит треугольник, называется тетраэдром .

Пирамида называется правильной , если в ее основании лежит правильный многоугольник и выполнено одно из условий:

\((a)\) боковые ребра пирамиды равны;

\((b)\) высота пирамиды проходит через центр описанной около основания окружности;

\((c)\) боковые ребра наклонены к плоскости основания под одинаковым углом.

\((d)\) боковые грани наклонены к плоскости основания под одинаковым углом.

Правильный тетраэдр – это треугольная пирамида, все грани которой – равные равносторонние треугольники.

Теорема

Условия \((a), (b), (c), (d)\) эквивалентны.

Доказательство

Проведем высоту пирамиды \(PH\) . Пусть \(\alpha\) – плоскость основания пирамиды.


1) Докажем, что из \((a)\) следует \((b)\) . Пусть \(PA_1=PA_2=PA_3=...=PA_n\) .

Т.к. \(PH\perp \alpha\) , то \(PH\) перпендикулярна любой прямой, лежащей в этой плоскости, значит, треугольники – прямоугольные. Значит, эти треугольники равны по общему катету \(PH\) и гипотенузам \(PA_1=PA_2=PA_3=...=PA_n\) . Значит, \(A_1H=A_2H=...=A_nH\) . Значит, точки \(A_1, A_2, ..., A_n\) находятся на одинаковом расстоянии от точки \(H\) , следовательно, лежат на одной окружности с радиусом \(A_1H\) . Эта окружность по определению и есть описанная около многоугольника \(A_1A_2...A_n\) .

2) Докажем, что из \((b)\) следует \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и равны по двум катетам. Значит, равны и их углы, следовательно, \(\angle PA_1H=\angle PA_2H=...=\angle PA_nH\) .

3) Докажем, что из \((c)\) следует \((a)\) .

Аналогично первому пункту треугольники \(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и по катету и острому углу. Значит, равны и их гипотенузы, то есть \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Докажем, что из \((b)\) следует \((d)\) .

Т.к. в правильном многоугольнике совпадают центры описанной и вписанной окружности (вообще говоря, эта точка называется центром правильного многоугольника), то \(H\) – центр вписанной окружности. Проведем перпендикуляры из точки \(H\) на стороны основания: \(HK_1, HK_2\) и т.д. Это – радиусы вписанной окружности (по определению). Тогда по ТТП (\(PH\) – перпендикуляр на плоскость, \(HK_1, HK_2\) и т.д. – проекции, перпендикулярные сторонам) наклонные \(PK_1, PK_2\) и т.д. перпендикулярны сторонам \(A_1A_2, A_2A_3\) и т.д. соответственно. Значит, по определению \(\angle PK_1H, \angle PK_2H\) равны углам между боковыми гранями и основанием. Т.к. треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по двум катетам), то и углы \(\angle PK_1H, \angle PK_2H, ...\) равны.

5) Докажем, что из \((d)\) следует \((b)\) .

Аналогично четвертому пункту треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по катету и острому углу), значит, равны отрезки \(HK_1=HK_2=...=HK_n\) . Значит, по определению, \(H\) – центр вписанной в основание окружности. Но т.к. у правильных многоугольников центры вписанной и описанной окружности совпадают, то \(H\) – центр описанной окружности. Чтд.

Следствие

Боковые грани правильной пирамиды – равные равнобедренные треугольники.

Определение

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой .
Апофемы всех боковых граней правильной пирамиды равны между собой и являются также медианами и биссектрисами.

Важные замечания

1. Высота правильной треугольной пирамиды падает в точку пересечения высот (или биссектрис, или медиан) основания (основание – правильный треугольник).

2. Высота правильной четырехугольной пирамиды падает в точку пересечения диагоналей основания (основание – квадрат).

3. Высота правильной шестиугольной пирамиды падает в точку пересечения диагоналей основания (основание – правильный шестиугольник).

4. Высота пирамиды перпендикулярна любой прямой, лежащей в основании.

Определение

Пирамида называется прямоугольной , если одно ее боковое ребро перпендикулярно плоскости основания.


Важные замечания

1. У прямоугольной пирамиды ребро, перпендикулярное основанию, является высотой пирамиды. То есть \(SR\) – высота.

2. Т.к. \(SR\) перпендикулярно любой прямой из основания, то \(\triangle SRM, \triangle SRP\) – прямоугольные треугольники.

3. Треугольники \(\triangle SRN, \triangle SRK\) – тоже прямоугольные.
То есть любой треугольник, образованный этим ребром и диагональю, выходящей из вершины этого ребра, лежащей в основании, будет прямоугольным.

\[{\Large{\text{Объем и площадь поверхности пирамиды}}}\]

Теорема

Объем пирамиды равен трети произведения площади основания на высоту пирамиды: \

Следствия

Пусть \(a\) – сторона основания, \(h\) – высота пирамиды.

1. Объем правильной треугольной пирамиды равен \(V_{\text{прав.треуг.пир.}}=\dfrac{\sqrt3}{12}a^2h\) ,

2. Объем правильной четырехугольной пирамиды равен \(V_{\text{прав.четыр.пир.}}=\dfrac13a^2h\) .

3. Объем правильной шестиугольной пирамиды равен \(V_{\text{прав.шест.пир.}}=\dfrac{\sqrt3}{2}a^2h\) .

4. Объем правильного тетраэдра равен \(V_{\text{прав.тетр.}}=\dfrac{\sqrt3}{12}a^3\) .

Теорема

Площадь боковой поверхности правильной пирамиды равна полупроизведению периметра основания на апофему.

\[{\Large{\text{Усеченная пирамида}}}\]

Определение

Рассмотрим произвольную пирамиду \(PA_1A_2A_3...A_n\) . Проведем через некоторую точку, лежащую на боковом ребре пирамиды, плоскость параллельно основанию пирамиды. Данная плоскость разобьет пирамиду на два многогранника, один из которых – пирамида (\(PB_1B_2...B_n\) ), а другой называется усеченная пирамида (\(A_1A_2...A_nB_1B_2...B_n\) ).


Усеченная пирамида имеет два основания – многоугольники \(A_1A_2...A_n\) и \(B_1B_2...B_n\) , которые подобны друг другу.

Высота усеченной пирамиды – это перпендикуляр, проведенный из какой-нибудь точки верхнего основания к плоскости нижнего основания.

Важные замечания

1. Все боковые грани усеченной пирамиды – трапеции.

2. Отрезок, соединяющий центры оснований правильной усеченной пирамиды (то есть пирамиды, полученной сечением правильной пирамиды), является высотой.

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками.

У данного многогранника есть множество различных свойств:

  • Его боковые ребра и прилегающие к ним двугранные углы равны между собой;
  • Площади боковых граней одинаковы;
  • В основании правильной четырехугольной пирамиды лежит квадрат;
  • Высота, опущенная из вершины пирамиды, пересекается с точкой пересечения диагоналей основания.

Все эти свойства помогают легко находить . Однако довольно часто помимо нее требуется рассчитать объем многогранника. Для этого применяется формула объема четырехугольной пирамиды:

То есть объем пирамиды равен одной третьей произведения высоты пирамиды на площадь основания. Так как равна произведению его равных сторон, то мы сразу вписываем в выражение объема формулу площади квадрата.
Рассмотрим пример расчета объема четырехугольной пирамиды.

Пусть дана четырехугольная пирамида, в основании которой лежит квадрат со стороной a = 6 см. Боковая грань пирамиды равна b = 8 см. Найдите объем пирамиды.

Чтобы найти объем заданного многогранника, нам потребуется длина его высоты. Поэтому мы найдем ее, применив теорему Пифагора. Для начала рассчитаем длину диагонали. В синем треугольнике она будет гипотенузой. Стоит также помнить, что диагонали квадрата равны между собой и в точке пересечения делятся пополам:


Теперь из красного треугольника найдем необходимую нам высоту h . Она будет равна:

Подставим необходимые значения и найдем высоту пирамиды:

Теперь, зная высоту, можем подставлять все значения в формулу объема пирамиды и рассчитывать необходимую величину:

Вот таким образом, зная несколько простых формул, мы смогли рассчитать объем правильной четырехугольной пирамиды. Не забывайте, что данная величина измеряется в кубических единицах.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое пирамида?

Как она выглядит?

Видишь: у пирамиды внизу (говорят «в основании ») какой-нибудь многоугольник, и все вершины этого многоугольника соединены с некоторой точкой в пространстве (эта точка называется «вершина »).

У всей этой конструкции ещё есть боковые грани , боковые рёбра и рёбра основания . Ещё раз нарисуем пирамиду вместе со всеми этими названиями:

Некоторые пирамиды могут выглядеть очень странно, но всё равно это - пирамиды.

Вот, например, совсем «косая» пирамида .

И ещё немного о названиях: если в основании пирамиды лежит треугольник, то пирамида называется треугольной, если четырёхугольник, то четырёхугольной, а если стоугольник, то … догадайся сам.

При этом точка, куда oпустилась высота , называется основанием высоты . Обрати внимание, что в «кривых» пирамидах высота может вообще оказаться вне пирамиды. Вот так:

И ничего в этом страшного нет. Похоже на тупоугольный треугольник.

Правильная пирамида.

Много сложный слов? Давай расшифруем: «В основании - правильный » - это понятно. А теперь вспомним, что у правильного многоугольника есть центр - точка, являющаяся центром и , и .

Ну вот, а слова «вершина проецируется в центр основания» означают, что основание высоты попадает как раз в центр основания. Смотри, как ровненько и симпатично выглядит правильная пирамида .

Шестиугольная : в основании - правильный шестиугольник, вершина проецируется в центр основания.

Четырёхугольная : в основании - квадрат, вершина проецируется в точку пересечения диагоналей этого квадрата.

Треугольная : в основании - правильный треугольник, вершина проецируется в точку пересечения высот (они же и медианы, и биссектрисы) этого треугольника.

Очень важные свойства правильной пирамиды:

В правильной пирамиде

  • все боковые рёбра равны.
  • все боковые грани - равнобедренные треугольники и все эти треугольники равны.

Объем пирамиды

Главная формула объема пирамиды:

Откуда взялась именно? Это не так уж просто, и на первых порах нужно просто запомнить, что у пирамиды и конуса в формуле объема есть, а у цилиндра - нет.

Теперь давай посчитаем объем самых популярных пирамид.

Пусть сторона основания равна, а боковое ребро равно. Нужно найти и.

Это площадь правильного треугольника.

Вспомним, как искать эту площадь. Используем формулу площади:

У нас « » - это, а « » - это тоже, а.

Теперь найдем.

По теореме Пифагора для

Чему же равно? Это радиус описанной окружности в, потому что пирамида правильная и, значит, - центр.

Так как - точка пересечения и медиан тоже.

(теорема Пифагора для)

Подставим в формулу для.

И подставим все в формулу объема:

Внимание: если у тебя правильный тетраэдр (т.е.), то формула получается такой:

Пусть сторона основания равна, а боковое ребро равно.

Здесь и искать не нужно; ведь в основании - квадрат, и поэтому.

Найдем. По теореме Пифагора для

Известно ли нам? Ну, почти. Смотри:

(это мы увидели, рассмотрев).

Подставляем в формулу для:

А теперь и и подставляем в формулу объема.

Пусть сторона основания равна, а боковое ребро.

Как найти? Смотри, шестиугольник состоит ровно из шести одинаковых правильных треугольников. Площадь правильного треугольника мы уже искали при подсчете объема правильной треугольной пирамиды, здесь используем найденную формулу.

Теперь найдем (это).

По теореме Пифагора для

Но чему же равно? Это просто, потому что (и все остальные тоже) правильный.

Подставляем:

\displaystyle V=\frac{\sqrt{3}}{2}{{a}^{2}}\sqrt{{{b}^{2}}-{{a}^{2}}}

ПИРАМИДА. КОРОТКО О ГЛАВНОМ

Пирамида - это многогранник, который состоит из любого плоского многоугольника (), точки, не лежащей в плоскости основания, (вершина пирамиды ) и всех отрезков, соединяющих вершину пирамиды с точками основания (боковые ребра ).

Перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Правильная пирамида - пирамида, у которой в основании лежит правильный многоугольник, а вершина пирамиды проецируется в центр основания.

Свойство правильной пирамиды:

  • В правильной пирамиде все боковые рёбра равны.
  • Все боковые грани - равнобедренные треугольники и все эти треугольники равны.

Объем пирамиды:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

  • апофема — высота боковой грани правильной пирамиды , которая проведена из ее вершины (кроме того, апофемой является длина перпендикуляра, который опущен из середины правильного многоугольника на 1-ну из его сторон);
  • боковые грани (ASB, BSC, CSD, DSA) — треугольники, которые сходятся в вершине;
  • боковые ребра ( AS , BS , CS , DS ) — общие стороны боковых граней;
  • вершина пирамиды (т. S) — точка, которая соединяет боковые ребра и которая не лежит в плоскости основания;
  • высота ( SO ) — отрезок перпендикуляра, который проведен через вершину пирамиды к плоскости ее основания (концами такого отрезка будут вершина пирамиды и основание перпендикуляра);
  • диагональное сечение пирамиды — сечение пирамиды, которое проходит через вершину и диагональ основания;
  • основание (ABCD) — многоугольник, которому не принадлежит вершина пирамиды.

Свойства пирамиды.

1. Когда все боковые ребра имеют одинаковую величину, тогда:

  • около основания пирамиды легко описать окружность , при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • боковые ребра образуют с плоскостью основания одинаковые углы ;
  • кроме того, верно и обратное, т.е. когда боковые ребра образуют с плоскостью основания равные углы, либо когда около основания пирамиды можно описать окружность и вершина пирамиды будет проецироваться в центр этой окружности, значит, все боковые ребра пирамиды имеют одинаковую величину.

2. Когда боковые грани имеют угол наклона к плоскости основания одной величины, тогда:

  • около основания пирамиды легко описать окружность, при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • высоты боковых граней имеют равную длину;
  • площадь боковой поверхности равняется ½ произведения периметра основания на высоту боковой грани.

3. Около пирамиды можно описать сферу в том случае, если в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы станет точка пересечения плоскостей, которые проходят через середины ребер пирамиды перпендикулярно им. Из этой теоремы делаем вывод, что как около всякой треугольной, так и около всякой правильной пирамиды можно описать сферу.

4. В пирамиду можно вписать сферу в том случае, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в 1-ной точке (необходимое и достаточное условие). Эта точка станет центром сферы.

Простейшая пирамида.

По количеству углов основания пирамиды делят на треугольные, четырехугольные и так далее.

Пирамида будет треугольной , четырехугольной , и так далее, когда основанием пирамиды будет треугольник, четырехугольник и так далее. Треугольная пирамида есть четырехгранник — тетраэдр . Четырехугольная — пятигранник и так далее.