Решение задач по аналитической геометрии. линии второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка . Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической , если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат , поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой») , причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой , которая представляет собой линию первого порядка .

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

Например:

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка . Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка , и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат .

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду .

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим . Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Пример 1

Построить эллипс, заданный уравнением

Решение : сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса , которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :


Отрезок называют большой осью эллипса;
отрезок малой осью ;
число называют большой полуосью эллипса;
число малой полуосью .
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы . И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат . И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:


Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса .

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

В нашем случае:

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат .

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на … смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю .

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем , интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Пример 2

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Добавим экшена:

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

Рассмотрим задачу приведения уравнения линии второго порядка к наиболее простому (каноническому) виду.

Напомним, что алгебраической линией второго порядка называется геометрическое место точек плоскости, которое в какой-либо аффинной системе координат Ox_1x_2 может быть задано уравнением вида p(x_1,x_2)=0, где p(x_1,x_2) - многочлен второй степени двух переменных Ox_1x_2 . Требуется найти прямоугольную систему координат, в которой уравнение линии приняло бы наиболее простой вид.

Результатом решения поставленной задачи является следующая основная теорема (3.3)

Классификация алгебраических линий второго порядка (теорема 3.3)

Для любой алгебраической линии второго порядка существует прямоугольная система координат Oxy , в которой уравнение этой линии принимает один из следующих девяти канонических видов:

Теорема 3.3 дает аналитические определения линий второго порядка. Согласно пункту 2 замечаний 3.1, линии (1), (4), (5), (6), (7), (9) называются вещественными (действительными), а линии (2), (3), (8) - мнимыми.

Приведем доказательство теоремы, поскольку оно фактически содержит алгоритм решения поставленной задачи.

Без ограничения общности можно предполагать, что уравнение линии второго порядка задано в прямоугольной системе координат Oxy . В противном случае можно перейти от непрямоугольной системы координат Ox_1x_2 к прямоугольной Oxy , при этом уравнение линии будет иметь тот же вид и ту же степень согласно теореме 3.1 об инвариантности порядка алгебраической линии.

Пусть в прямоугольной системе координат Oxy алгебраическая линия второго порядка задана уравнением

A_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0,

в котором хотя бы один из старших коэффициентов a_{11},a_{12},a_{22} отличен от нуля, т.е. левая часть (3.34) - многочлен двух переменных x,y второй степени. Коэффициенты при первых степенях переменных x и y , а также при их произведении x\cdot y взяты удвоенными просто для удобства дальнейших преобразований.

Для приведения уравнения (3.34) к каноническому виду используются следующие преобразования прямоугольных координат:

– поворот на угол \varphi

\begin{cases}x=x"\cdot\cos\varphi-y"\cdot\sin\varphi,\\y=x"\cdot\sin\varphi+y"\cdot\cos\varphi;\end{cases}

– параллельный перенос

\begin{cases}x=x_0+x",\\y=y_0+y";\end{cases}

– изменение направлений координатных осей (отражения в координатных осях):

оси ординат \begin{cases}x=x",\\y=-y",\end{cases} оси абсцисс \begin{cases}x=-x",\\y=y",\end{cases} обеих осей \begin{cases}x=-x",\\y=-y";\end{cases}

– переименование координатных осей (отражение в прямой y=x )

\begin{cases}x=y",\\y=x",\end{cases}

где x,y и x",y" - координаты произвольной точки в старой (Oxy) и новой O"x"y" системах координат соответственно.

Кроме преобразования координат обе части уравнения можно умножать на отличное от нуля число.

Рассмотрим сначала частные случаи, когда уравнение (3.34) имеет вид:

\begin{aligned} &\mathsf{(I)\colon}~ \lambda_2\cdot y^2+a_0,~\lambda_2\ne0;\\ &\mathsf{(II)\colon}~ \lambda_2\cdot y^2+2\cdot a_1\cdot x,~\lambda_2\ne0,~a_1\ne0;\\ &\mathsf{(III)\colon}~ \lambda_1\cdot x^2+\lambda_2\cdot y^2+a_0,~\lambda_1\ne0,~\lambda_2\ne0. \end{aligned}

Эти уравнения (также многочлены в левых частях) называются приведенными. Покажем, что приведенные уравнения (I), (II), (III) сводятся к каноническим (1)–(9).

Уравнение (I). Если в уравнении (I) свободный член равен нулю (a_0=0) , то, разделив обе части уравнения \lambda_2y^2=0 на старший коэффициент (\lambda_0\ne0) , получим y^2=0 - уравнение двух совпадающих прямых (9), содержащих ось абсцисс y=0 . Если же свободный член отличен от нуля a_0\ne0 , то разделим обе части уравнения (I) на старший коэффициент (\lambda_2\ne0): y^2+\frac{a_0}{\lambda_2}=0 . Если величина отрицательная, то, обозначив ее через -b^2 , где b=\sqrt{-\frac{a_0}{\lambda_2}} , получаем y^2-b^2=0 - уравнение пары параллельных прямых (7): y=b или y=-b . Если же величина \frac{a_0}{\lambda_2} положительная, то, обозначив ее через b^2 , где b=\sqrt{\frac{a_0}{\lambda_2}} , получаем y^2+b^2=0 - уравнение пары мнимых параллельных прямых (8). Это уравнение не имеет действительных решений, поэтому на координатной плоскости нет точек, отвечающих этому уравнению. Однако в области комплексных чисел уравнение y^2+b^2=0 имеет два сопряженных решения y=\pm ib , которые иллюстрируются штриховыми линиями (см. пункт 8 теоремы 3.3).

Уравнение (II). Разделим уравнение на старший коэффициент (\lambda_2\ne0) и перенесем линейный член в правую часть: y^2=-\frac{2a_1}{\lambda_2}\,x . Если величина отрицательная, то, обозначая p=-\frac{a_1}{\lambda_2}>0 , получаем y^2=2px - уравнение параболы (6). Если величина \frac{a_1}{\lambda_2} положительная, то, изменяя направление оси абсцисс, т.е. выполняя второе преобразование в (3.37), получаем уравнение (y")^2=\frac{2a_1}{\lambda_2}\,x" или (y")^2=2px" , где p=\frac{a_1}{\lambda_2}>0 . Это уравнение параболы в новой системе координат Ox"y" .

Уравнение (III). Возможны два случая: либо старшие коэффициенты одного знака (эллиптический случай), либо противоположных знаков (гиперболический случай).

В эллиптическом случае (\lambda_1\lambda_2>0)

\mathsf{(III)}\quad\Leftrightarrow\quad \lambda_1\cdot x^2+\lambda_2\cdot y^2=-a_0\quad \Leftrightarrow \quad \frac{\lambda_1}{-a_0}\cdot x^2+\frac{\lambda_2}{-a_0}\cdot y^2=1

Противоположен знаку a_0 , то, обозначая положительные величины и \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 - уравнение эллипса (1).

Если знак старших коэффициентов \lambda_1,\lambda_2 совпадает со знаком a_0 , то, обозначая положительные величины \frac{a_0}{\lambda_1} и \frac{a_0}{\lambda_2} через a^2 и b^2 , получаем -\frac{x^2}{a^2}-\frac{y^2}{b^2}=1~\Leftrightarrow~\frac{x^2}{a^2}+\frac{y^2}{b^2}=-1 - уравнение мнимого эллипса (2). Это уравнение не имеет действительных решений. Однако оно имеет решения в области комплексных чисел, которые иллюстрируются штриховой линией (см. пункт 2 теоремы 3.3).

Можно считать, что в уравнениях эллипса (действительного или мнимого) коэффициенты удовлетворяют неравенству a\geqslant b , в противном случае этого можно добиться, переименовывая координатные оси, т.е. делая преобразование (3.38) системы координат.

Если свободный член уравнения (III) равен нулю (a_0=0) , то, обозначая положительные величины \frac{1}{|\lambda_1|} и \frac{1}{|\lambda_2|} через a^2 и b^2 , получаем \frac{x^2}{a^2}+\frac{y^2}{b^2}=0 - уравнение пары мнимых пересекающихся прямых (3). Этому уравнению удовлетворяет только точка с координатами x=0 и y=0 , т.е. точка O - начало координат. Однако в области комплексных чисел левую часть уравнения можно разложить на множители \frac{x^2}{a^2}+\frac{y^2}{b^2}=\left(\frac{y}{b}+i\,\frac{x}{a}\right)\!\!\left(\frac{y}{b}-i\,\frac{x}{a}\right) , поэтому уравнение имеет сопряженные решения y=\pm i\,\frac{b}{a}\,x , которые иллюстрируются штриховыми линиями, пересекающимися в начале координат (см. пункт 3 теоремы 3.3).

В гиперболическом случае (\lambda_1,\lambda_2<0) при a_0\ne0 переносим свободный член в правую часть и делим обе части на -a_0\ne0 :

\mathsf{(III)}\quad \Leftrightarrow \quad \lambda_1\cdot x^2+\lambda_2\cdot y^2=-a_0 \quad \Leftrightarrow \quad \frac{\lambda_1}{-a_0}\cdot x^2+\frac{\lambda_2}{-a_0}\cdot y^2=1.

Величины \frac{-a_0}{\lambda_1} и \frac{-a_0}{\lambda_2} имеют противоположные знаки. Без ограничения общности считаем, что знак \lambda_2 совпадает со знаком свободного члена a_0 , т.е. \frac{a_0}{\lambda_2}>0 . В противном случае нужно переименовать координатные оси, т.е. сделать преобразование (3.38) системы координат. Обозначая положительные величины \frac{-a_0}{\lambda_1} и \frac{a_0}{\lambda_2} через a^2 и b^2 , получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 - уравнение гиперболы (4).

Пусть в уравнении (III) свободный член равен нулю (a_0=0) . Тогда можно считать, что \lambda_1>0 , а \lambda_2<0 (в противном случае обе части уравнения умножим на –1) . Обозначая положительные величины \frac{1}{\lambda_1} и -\frac{1}{\lambda_2} через a^2 и b^2 , получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=0 - уравнение пары пересекающихся прямых (5). Уравнения прямых находятся в результате разложения на множители левой части уравнения

\frac{x^2}{a^2}-\frac{y^2}{b^2}=\left(\frac{x}{a}-\frac{y}{b}\right)\!\!\left(\frac{x}{a}+\frac{y}{b}\right)=0 , то есть y=\pm\frac{b}{a}\cdot x

Таким образом, приведенные уравнения (I),(II),(III) алгебраической линии второго порядка сводятся к одному из канонических видов (1)–(9), перечисленных в теореме 3.3.

Осталось показать, что общее уравнение (3.34) можно свести к приведенным при помощи преобразований прямоугольной системы координат.

Упрощение общего уравнения (3.34) производится в два этапа. На первом этапе при помощи поворота системы координат "уничтожается" член с произведением неизвестных. Если произведения неизвестных нет (a_{12}=0) , то поворот делать не надо (в этом случае переходим сразу ко второму этапу). На втором этапе при помощи параллельного переноса "уничтожаются" один или оба члена первой степени. В результате получаются приведенные уравнения (I),(II),(III).

Первый этап: преобразование уравнения линии второго порядка при повороте прямоугольной системы координат.

Если коэффициент a_{12}\ne0 , выполним поворот системы координат на угол \varphi . Подставляя выражения (3.35) в уравнение (3.34), получаем:

\begin{gathered} a_{11}(x"\cos\varphi-y"\sin\varphi)^2+2a_{12}(x"\cos\varphi-y"\sin\varphi)(x"\sin\varphi+y"\cos\varphi)+a_{22}(x"\sin\varphi+y"\cos\varphi)^2+\\ +2a_1(x"\cos\varphi-y"\sin\varphi)+2a_2(x"\cos\varphi-y"\sin\varphi)+a_0=0. \end{gathered}

Приводя подобные члены, приходим к уравнению вида (3.34):

A"_{11}(x")^2+2a"_{12}x"y"+a"_{22}(y")^2+2a"_1x"+2a"_2y"+a"_0=0,

\begin{aligned}a"_{11}&=a_{11}\cos^2\varphi+2a_{12}\cos\varphi\sin\varphi+a_{22}\sin^2\varphi;\\ a"_{12}&=-a_{11}\cos\varphi\sin\varphi+a_{12}(\cos^2\varphi-\sin^2\varphi)+a_{22}\cos\varphi\sin\varphi;\\ a"_{22}&=a_{11}\sin^2\varphi-2a_{12}\cos\varphi\sin\varphi+a_{22}\cos^2\varphi;\\ a"_1&=a_1\cos\varphi+a_2\sin\varphi;\quad a"_2=-a_1\sin\varphi+a_2\cos\varphi; \quad a"_0=a_0. \end{aligned}

Определим угол \varphi так, чтобы a"_{12}=0 . Преобразуем выражение для a"_{12} , переходя к двойному углу:

A"_{12}= -\frac{1}{2}\,a_{11}\sin2\varphi+a_{12}\cos2\varphi+\frac{1}{2}\,a_{22}\sin2\varphi= \frac{a_{22}-a_{11}}{2}\,\sin2\varphi+a_{12}\cos2\varphi.

Угол \varphi должен удовлетворять однородному тригонометрическому уравнению \frac{a_{22}-a_{11}}{2}\,\sin2\varphi+a_{12}\cos2\varphi=0 , которое равносильно уравнению

\operatorname{ctg}2\varphi=\frac{a_{11}-a_{22}}{2a_{12}},

поскольку a_{12}\ne 0 . Это уравнение имеет бесконечное количество корней

\varphi=\frac{1}{2}\operatorname{arcctg}\frac{a_{11}-a_{22}}{2a_{12}}+\frac{\pi}{2}\,n, \quad n\in\mathbb{Z}.


Выберем любой из них, например, угол \varphi из интервала 0<\varphi<\frac{\pi}{2} . Тогда в уравнении (3.39) исчезнет член 2a"_{12}x"y" , поскольку a"_{12}=0 .

Обозначив оставшиеся старшие коэффициенты через \lambda_1= a" и \lambda_2=a"_{22} , получим уравнение

\lambda_1\cdot(x")^2+\lambda_2\cdot(y")^2+2\cdot a"_1\cdot x"+2\cdot a"_2\cdot y"+a"_0=0.

Согласно теореме 3.1, уравнение (3.41) является уравнением второй степени (при преобразовании (3.35) порядок линии сохраняется), т.е. хотя бы один из старших коэффициентов \lambda_1 или \lambda_2 отличен от нуля. Далее будем считать, что именно коэффициент при (y")^2 не равен нулю (\lambda_2\ne0) . В противном случае (при \lambda_2=0 и \lambda_1\ne0 ) следует сделать поворот системы координат на угол \varphi+\frac{\pi}{2} , который также удовлетворяет условию (3.40). Тогда вместо координат x",y" в (3.41) получим y",-x" соответственно, т.е. отличный от нуля коэффициент \lambda_1 будет при (y")^2 .

Второй этап: преобразование уравнения линии второго порядка при параллельном переносе прямоугольной системы координат.

Уравнение (3.41) можно упростить, выделяя полные квадраты. Нужно рассмотреть два случая: \lambda_1\ne0 или \lambda_1=0 (согласно предположению \lambda_2\ne0 ), которые называются центральный (включающий эллиптический и гиперболический случаи) или параболический соответственно. Геометрический смысл этих названий раскрывается в дальнейшем.

Центральный случай: \lambda_1\ne0 и \lambda_2\ne0 . Выделяя полные квадраты по переменным x",y" , получаем

\begin{gathered}\lambda_1\left[(x")^2+2\,\frac{a"_1}{\lambda_1}\,x"+{\left(\frac{a"_1}{\lambda_1}\right)\!}^2\right]+ \lambda_2\left[(y")^2+2\,\frac{a"_2}{\lambda_2}\,y"+{\left(\frac{a"_2}{\lambda_2}\right)\!}^2\right]- \lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0~\Leftrightarrow\\ \Leftrightarrow~ \lambda_1{\left(x"+\frac{a"_1}{\lambda_1}\right)\!}^2+\lambda_2{\left(y"+\frac{a"_2}{\lambda_2}\right)\!}^2- \lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0. \end{gathered}

После замены переменных

\left\{\begin{aligned} x""&=x"+\frac{a"_1}{\lambda_1},\\ y""&=y"+\frac{a"_2}{\lambda_2}, \end{aligned}\right.

получаем уравнение

\lambda_1\,(x"")^2+\lambda_2\,(y"")^2+a""_0=0,

где a""_0=-\lambda_1{\left(\frac{a"_1}{\lambda_1}\right)\!}^2-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0 .

Параболический случай: \lambda_1=0 и \lambda_2\ne0 . Выделяя полный квадрат по переменной y" , получаем

\begin{gathered} \lambda_2\left[(y")^2+2\cdot\frac{a"_2}{\lambda_2}\cdot y"+{\left(\frac{a"_2}{\lambda_2}\right)\!}^2\right]+2\cdot a"_1\cdot x"-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0 \quad \Leftrightarrow \\ \Leftrightarrow \quad \lambda_2{\left(y"+\frac{a"_2}{\lambda_2}\right)\!}^2+2\cdot a"_1\cdot x"-\lambda_2{\left(\frac{a"_2}{\lambda_2}\right)\!}^2+a"_0=0.\end{gathered}

Если a"_1\ne0 , то последнее уравнение приводится к виду

\lambda_2{\left(y"+ \frac{a"_2}{\lambda_2}\right)\!}^2+ 2\cdot a"_1\left=0.

Сделав замену переменных

\left\{\begin{aligned} x""&=x"+\frac{a"_0}{2a"_1}- \frac{\lambda_2}{2a"_1}{\left(\frac{a"_2}{\lambda_2}\right)\!}^2,\\ y""&=y"+ \frac{a"_2}{\lambda_2}, \end{aligned}\right.

получим, где a""_1=a"_1

\lambda_2\cdot(y"")^2+2\cdot a""_1\cdot x""=0,

Если a"_1=0 , то уравнение (3.44) приводится к виду, где a""_0=-\lambda_2{\left(\frac{a"_2}{\lambda_2} \right)\!}^2+a"_0 ,

\lambda_2\cdot(y"")^2+a""_0,

\left\{\begin{aligned}x""&=x",\\y""&=y"+\frac{a"_2}{\lambda_2}.\end{aligned}\right.

Замены переменных (3.42), (3.45), (3.48) соответствуют параллельному переносу системы координат Ox"y" (см. пункт 1"a" замечаний 2.3).

Таким образом, при помощи параллельного переноса системы координат Ox"y" получаем новую систему координат O""x""y"" , в которой уравнение линии второго порядка принимает вид (3.43), или (3.46), или (3.47). Эти уравнения являются приведенными (вида (III),(II) или (I) соответственно).

Основная теорема 3.3 о приведении уравнения алгебраической линии второго порядка к каноническому виду доказана.

Замечания 3.8

1. Система координат, в которой уравнение алгебраической линии второго порядка имеет канонический вид, называется канонической. Каноническая система координат определяется неоднозначно. Например, изменяя направление оси ординат на противоположное, снова получаем каноническую систему координат, так как замена переменной y на (-y) не изменяет уравнений (1)–(9). Поэтому ориентация канонической системы координат не имеет принципиального значения, ее всегда можно сделать правой, изменив при необходимости направление оси ординат.

2. Ранее показано, что преобразования прямоугольных систем координат на плоскости сводятся к одному из преобразований (2.9) или (2.10):

\begin{cases} x=x_0+x"\cdot\cos\varphi-y"\cdot\sin\varphi,\\ y=y_0+x"\cdot\sin\varphi+y"\cdot\cos\varphi, \end{cases}\quad \begin{cases} x=x_0+x"\cdot\cos\varphi+y"\cdot\sin\varphi,\\ y=y_0+x"\cdot\sin\varphi-y"\cdot\cos\varphi.\end{cases}

Поэтому задача приведения уравнения линии второго порядка к каноническому виду сводится к нахождению начала O"(x_0,y_0) канонической системы координат O"x"y" и угла \varphi наклона ее оси абсцисс O"x" к оси абсцисс Ox исходной системы координат Oxy .

3. В случаях (3),(5),(7),(8),(9) линии называются распадающимися, поскольку соответствующие им многочлены второй степени разлагаются в произведение многочленов первой степени.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

1. Окружность. 2Окружностью называется геометрическое место точек, равноудаленных от одной фиксированной точки, называемой центром окружности. Расстояние от произвольной точки окружности до его центра называется радиусом окружности .

g Если центр окружности находится в точке , а радиус равен R , то уравнение окружности имеет вид:

4Обозначим через (рис. 3.5) произвольную точку окружности. Используя формулу расстояния между двумя токами (3.1) и определение окружности, получим: . Возводя полученное равенство в квадрат, мы получим формулу (3.13).3

2. Эллипс. 2 Эллипсом называется геометрическое место точек, сумма расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Для того, чтобы вывести каноническое (простейшее) уравнение эллипса, примем за ось Ox прямую, соединяющую фокусы F 1 и F 2 . Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Здесь через 2с обозначено расстояние между фокусами. Обозначим через x и y координаты произвольной точки М эллипса (рис 3.6). Тогда по определению эллипса, сумма расстояний от точки М до точек F 1 и F а ).

Уравнение (3.14) является уравнением эллипса. Упростим данное уравнение, избавившись от квадратных корней. Для этого перенесем один из радикалов в правую часть равенства (3.14) и возведем обе части полученного равенства в квадрат:

Возводя последнее равенство в квадрат, получим

Разделим обе части на :

.

Так как сумма расстояний от произвольной точки эллипса до его фокусов больше расстояния между фокусами, т.е. 2а > 2c , то .

Обозначим через b 2 . Тогда простейшее (каноническое) уравнение эллипса будет иметь вид:

где положено

Оси координат являются осями симметрии эллипса, заданного уравнением (3.15). Действительно, если точка с текущими координатами (x ; y ) принадлежит эллипсу, то и точки при любом сочетании знаков принадлежат эллипсу.

2Ось симметрии эллипса, на которой расположены фокусы, называется фокальной осью. Точки пересечения эллипса с его осями симметрии называются вершинами эллипса. Подставляя x = 0 или y = 0 в уравнение эллипса найдем координаты вершин:

А 1 (a ; 0), А 2 (– a ; 0), B 1 (0; b ), B 2 (0; – b ).

2Отрезки А 1 А 2 и B 1 B 2 , соединяющие противоположные вершины эллипса, а также их длины 2a и 2b , называют соответственно большой и малой осями эллипса. Числа a и b , называют соответственно большой и малой полуосями эллипса.


2Эксцентриситетом эллипса называется отношение расстояния между фокусами (2с ) к большой оси (2a ), т.е.

Так как а и с положительны, причем c < a , то эксцентриситет эллипса больше нуля, но меньше единицы ().

Если фокусы эллипса расположены на оси Oy (рис.3.7), то уравнение эллипса останется таким же, как и в предыдущем случае:

Однако в этом случае полуось b будет больше, чем a (эллипс вытянут вдоль оси Oy ). Формулы (3.16) и (3.17) претерпят следующие изменения соответственно:

3. Гипербола. 2Гиперболой называется геометрическое место точек, модуль разности расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Выводится каноническое уравнение гиперболы аналогично тому как это делалось в случае эллипса. За ось Ox принимаем прямую, соединяющую фокусы F 1 и F 2 (рис.3.8). Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Через 2с , как и прежде, обозначено расстояние между фокусами.

Обозначим через (x ; y М гиперболы. Тогда по определению гиперболы, разность расстояний от точки М до точек F 1 и F 2 равно константе (обозначим эту константу через 2а ).

Производя преобразования аналогичные тем, которые применялись при упрощении уравнения эллипса, мы придем к каноническому уравнению гиперболы:

, (3.21)
где положено

Оси координат являются осями симметрии гиперболы.

2Ось симметрии гиперболы, на которой расположены фокусы, называется фокальной осью. Точки пересечения гиперболы с ее осями симметрии называются вершинами гиперболы. С осью Oy гипербола не пересекается, т.к. уравнение не имеет решения. Подставляя y = 0 в уравнение (3.21) найдем координаты вершин гиперболы: А 1 (a ; 0), А 2 (– a ; 0).

2Отрезок 2a , длина которого равна расстоянию между вершинами гиперболы, называют действительной осью гиперболы. Отрезок 2b называют мнимой осью гиперболы. Числа a и b , называют соответственно действительной и мнимой полуосями гиперболы.

Можно доказать, что прямые линии

являются асимптотами гиперболы, т.е. такими прямыми, к которым неограниченно приближаются точки гиперболы при их неограниченном удалении от начала координат ().

2Эксцентриситетом гиперболы называется отношение расстояния между фокусами (2с ) к действительной оси (2a ), т.е., как и в случае эллипса

Однако в отличии от эллипса эксцентриситет гиперболы больше единицы.

Если фокусы гиперболы расположены на оси Oy , то в левой части уравнения гиперболы изменятся знаки на противоположные:

. (3.25)

В этом случае полуось b будет действительной, а полуось a – мнимой. Ветви гиперболы будут симметричны относительно оси Oy (рис 3.9). Формулы (3.22) и (3.23) не изменятся, формула (3.24) будет выглядеть следующим образом:

4. Парабола. Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом и от данной прямой, называемой директрисой (предполагается, что фокус не лежит на директрисе).

Для того, чтобы составить простейшее уравнение параболы примем за ось Ox прямую, проходящую через ее фокус перпендикулярно директрисе, и направленную от директрисы к фокусу. За начало координат примем середину отрезка O от фокуса F до точки А пересечения оси Ox с директрисой. Длина отрезка AF обозначается через p и называется параметром параболы.

В данной системе координат координаты точек А и F будут, соответственно, , . Уравнение директрисы параболы будет . Обозначим через (x ; y ) координаты произвольной точки М параболы (рис. 3.10). Тогда по определению параболы:

. (3.27)

Возведем обе части равенства (3.27) в квадрат:

, или

, откуда