Классификация и характеристика осадочных горных пород. Осадочные горные породы

Осадки и образующиеся при их диагенезе осадочные породы накапливаются в понижениях рельефа (на дне океанов и морей, озёр, в речных длинах, межгорных депрессиях и пр.) и, как правило, первоначально обладают горизонтальным залеганием. Образуемые ими уплощенные геологические тела называют слоями. Слой – это уплощенное геологическое тело относительно однородное по составу и строению, ограниченное приблизительно параллельными поверхностями раздела.

Верхняя граница слоя называется кровлей, нижняя - подошвой.

Примечание. Помимо термина «слой», часто употребляется термин «пласт», имеющий аналогичное значение, но обычно применяемый для полезных ископаемых, например угля, известняка и др.

Расстояние между кровлей и подошвой слоя определяет мощность данного слоя. Различают два вида мощности: истинную мощность - кратчайшее расстояние между кровлей и подошвой пласта (по перпендикуляру) и видимую мощность - любое другое (не кратчайшее) расстояние между подошвой и кровлей.

Чередование слоёв определяет слоистое строение толщ осадочных пород.

Группы слоёв, обладающие некоторой общностью признаков, отличающих их от смежных по разрезу слоёв (или групп слоёв) объединяют в пачки . Такая общность может быть связана с особенностью строения (повторяющееся на некоторой мощности разреза переслаивание двух или более разновидностей пород), отличием в литологическом составе (обогащённость минеральными компонентами, ожелезнение и пр.) или другими признаками, визуально выделяющими группу слоёв из общей мощности толщи.

Форма слоистости отражает характер движения среды, в которой происходит накопление осадка. Выделяют четыре основных типа слоистости: параллельную (горизонтальную), волнистую, косую, линзовидную.

Параллельная слоистость, когда поверхности наслоения параллельны, свидетельствует об относительной неподвижной среде, в которой накапливался осадок. Такие условия возникают в озёрах или морских бассейнах ниже уровня действия волн и течений.

Волнистая слоистость имеет волнисто-изогнутые поверхности наслоения. Она формируется при движениях, имеющих периодическую смену в одном направлении, например при отливах, приливах, прибрежных волнениях в мелководных зонах моря.

Линзовидная слоистость образуется при быстром и изменчивом движении водной или воздушной среды, например в речных потоках или приливно-отливной полосе моря. Она характеризуется разнообразием форм и изменчивостью мощности отдельных слоёв. Часто происходит выклинивание слоя, что приводит к его разобщению на отдельные части или линзы. Генетически тесно связана с волнистой.

Косой слоистостью называют слоистость с прямолинейными и криволинейными поверхностями наслоения и с различными углами мелкой слоистости внутри слоя. Она образуется при движении среды в одном направлении, например реки, потока, морского течения или движения воздуха. В речных потоках косая слоистость имеет общий наклон в сторону движения воды. Дельтовая разновидность косой слоистости более крупная и отличается плавным причленением косых слоёчков к подошве слоя, а у кровли косые слоёчки исчезают, и появляется более грубый материал. Косая слоистость морских отложений характеризуется также более крупными размерами и сравнительно небольшим наклоном. На мелководье образуется очень тонкая, переплетающаяся косая слоистость, ориентированная в различных направлениях.

Виды слоистости (слойчастости)

I - волнистая (и линзовидная), II - горизонтальная, III - косая

Особенности строения поверхностей наслоения помогают выяснить происхождение и условия залегания осадочных толщь. К числу таких особенностей относятся: ископаемые знаки ряби, первичные трещины усыхания, следы жизнедеятельности организмов, отпечатки дождевых капель, кристаллов льда и др.

Первичное и нарушенное залегание слоёв

Большая часть осадков образуется в морских или континентальных водоёмах или на прибрежных равнинах. Залегание осадков при этом практически горизонтальное (угол наклона не более 1 o). Такое залегание называют первичным . Первичное залегание с более крутым залеганием пород, достигающем 3-4 o , а иногда 10 o может возникнуть на склонах наземных и подводных возвышенностей, каньонов, уступов. Первичное залегание осадочных пород сохраняется сравнительно редко и нарушается последующими тектоническими движениями, что приводит к их наклонному залеганию, образованию складчатых и разрывных нарушений.

Пласты осадочных пород могут иметь согласное и несогласное залегание по отношению друг к другу. В случае согласного залегания каждый вышележащий слой, без каких либо следов перерыва в накоплении осадков налегает на нижележащие породы. Несогласное залегание образуется тогда, когда между вышележащим и подстилающим слоями отмечается перерыв в осадконакоплении и стратиграфическая последовательность нарушена. Несогласное залегание может быть параллельным , когда пласты, несмотря на перерыв в отложении осадка, сохраняют параллельное залегание и угловым , когда одна толща лежит с перерывом по отношению к другой под определённым углом. Например, когда на смятом в складки пласте известняка горизонтально залегает слой песчаника. Выявление стратиграфических несогласий является одной из наиболее важных задач геологического картирования и проводится с использованием следующих признаков:

  1. характерное строение поверхности несогласия, имеющей неровности, вымоины, уступы;
  2. угловое несогласие между слоями разного возраста;
  3. резкий возрастной разрыв между фауной в выше- и нижележащих слоёв;
  4. резкое различие в степени метаморфизма двух соприкасающихся слоёв;
  5. присутствие базального конгломерата в основании несогласно залегающей серии пород;
  6. резкий переход от морских к континентальным отложениям и наоборот;
  7. следы выветривания на поверхности несогласия.

Пликативные дислокации слоёв горных пород

В результате действия пластических деформаций горных пород возникает нарушенное залегание слоёв земной коры без видимого разрыва их сплошности. Такие формы нарушений называют пликативными дислокациями. К ним относится образование моноклиналей, складок и флексур.

Моноклинальное залегание образуется тогда, когда горизонтально залегающие породы в результате тектонических движений приобрели наклон под одним углом на значительном пространстве. Моноклиналь это наиболее простая форма пликативных дислокаций, широко проявлена в чехлах молодых и древних платформ. Существуют слабонаклонные (до 15 o), пологие (16-30 o), крутые (30-75 o), поставленные на голову (80-90 o) моноклинали.

Складчатые деформации или складки - это волнообразные изгибы пластов без разрыва сплошности пород. Этот тип дислокаций проявлен наиболее широко. Во всех типах складок различают несколько основных элементов.

Часть складки в месте перегиба слоёв называется замком, сводом или ядром . Крылья - боковые части складок, примыкающие к своду. Угол складки - угол, образованный линиями, являющимися продолжением крыльев складки. Осевая поверхность складки - воображаемая плоскость, проходящая через точки перегиба слоёв и делящая угол складки пополам. Осевая линия (ось складки) - линия пересечения осевой поверхности с горизонтальной плоскостью или с поверхностью рельефа. Осевая линия характеризует ориентировку складки в плане и определяется азимутом простирания. Шарнир складки - линия пересечения осевой поверхности складки с поверхностью одного из слоёв, составляющих складку. Он характеризует строение складки вдоль осевой поверхности (по вертикали) и определяется азимутом и углом погружения или воздымания. Размеры складок характеризуются длиной, шириной, высотой. Длина складки - это расстояние вдоль осевой линии между смежными перегибами шарнира. Ширина складки - расстояние между осевыми линиями двух соседних антиклиналей или синклиналей. Высотой складки называется расстояние по вертикали между замком антиклинали и замком смежной с ней синклинали.

Складки, пласты которых выгнуты кверху, называются антиклиналями. У этих складок в ядре на дневной поверхности обнажаются более древние породы, а на крыльях - более молодые и они наклонены от ядра. Складки, пласты которых прогнуты книзу, называются синклиналями. У них в ядре обнажаются более молодые породы, и крылья наклонены к ядру. Это две основные формы складок.


В зависимости от положения осевой поверхности в пространстве выделяют следующие разновидности складок.

Прямые складки - осевая поверхность вертикальна, а крылья падают в разные стороны под одинаковыми углами.

Наклонные складки - осевая поверхность наклонена к горизонту, а крылья падают в разные стороны под разными углами.

Опрокинутые складки - осевая поверхность круто наклонена, а крылья падают (наклонены) в одну сторону под разными углами. В этих складках различают нормальное и опрокинутое крылья.

Лежачие складки - осевая поверхность параллельна горизонтальной поверхности. Крылья наклонены в одну сторону под одним углом.

Классификация складок по положению осевой плоскости

Форма складок зависит также от соотношения крыльев и замка. В зависимости от этого складки могут быть острыми , когда крылья образуют острый угол (до 90 o), тупыми , с углом более 90 o , изоклинальными , с параллельным расположением крыльев и тупым замком, веерообразными , с пережимом крыльев, сундучными с пологим широким замком.

В продольном сечении складки бывают линейными , у которых длина превышает ширину более чем в три раза, брахиформными , с отношением длины к ширине меньше трёх и куполовидными , с примерно одинаковыми размерами длины и ширины складки.

Шарнир складки по простиранию часто испытывает погружение или воздымание и представляет не прямую, а волнистую линию. Это явление называется ундуляцией . В этом случае наблюдается замыкание складки, когда одно крыло вдоль оси постепенно переходит в другое. В антиклинальных складках такое замыкание называется периклинальным , а в синклинальных - центриклинальным .

Разновидностями антиклинальных складок являются диапировые складки и соляные купола . Их образование связано с присутствием в ядрах этих складок пластичных пород (глин, солей, гипса), которые, под действием огромного давления вышележащих пород, выжимаются и внедряются в эти породы, образуя пологий свод и крутые боковые поверхности.


Наиболее широко развитыми разновидностями диапировых складок являются соляные купола и глиняные диапиры. В соляных куполах различают ядро, сложенное пластичными породами и более хрупкие вмещающие породы. Ядро носит черты активного протыкания, а вмещающие породы пассивно приспосабливаются к движению ядра. Очень часто соль в ядре имеет форму цилиндрического столба, образуя «соляной шток». При внедрении соляных масс свод купола подвергается растяжению и в нём, могут возникнуть многочисленные трещины и разломы. С соляными куполами часто связаны промышленные скопления нефти и газа. Формирование диапировых складок, по данным Ю.А.Косыгина, а также американских исследователей Бартона, Нельтона и других, происходит лишь там, где мощность пластичных пород составляет не менее 120 м, а глубина их залегания превышает 300 м. Пластичные породы, будучи вовлечены в процесс сжатия, в месте с окружающими их хрупкими породами выжимаются из крыльев в ядра антиклиналей. При благоприятных условиях они могут прорвать перекрывающие породы и образовать диапировые складки.

(по Бенцу)


Складки часто собраны в группы и образуют параллельные, кулисообразные, четковидные, пучкообразные сообщества. Сложные линейно-складчатые структуры образуют синклинории и антиклинории. Антиклинории – это крупные, сложнопостроенные антиклинальные структуры, протяженностью сотни и даже тысячи километров. Они включают множество более мелких антиклинальных и синклинальных складок. Примером является мегантиклинорий Большого Кавказа. Синклинории – это такие же крупные, сложнопостроенные, но в целом синклинальные структуры, осложненные синклинальными и антиклинальными складками более низких порядков. Сочетание антиклинориев и синклинориев образует горные хребты и горные системы, такие как Альпы, Кавказ, Тянь-Шань и др.

Разновидностью крупных складок являются флексуры , которые представляют собой коленообразные или ступенчатые перегибы слоёв или пластов. В области перегиба мощности слагающих флексуру пластов несколько уменьшаются и часто возникают разрывы. Части флексуры, расположенные по обе стороны от перегиба называются крыльями. Выделяется смыкающее крыло, оставшееся на месте и нижнее - опущенное крыло. Вертикальная амплитуда смещения может составлять десятки, и даже сотни метров. Флексуры обычно ограничивают крупные платформенные структуры, такие как синеклизы, краевые прогибы и др.

Разрывные нарушения (дизъюнктивные дислокации)

Тектонические движения иногда приводят к разрыву сплошности пластов горных пород и образованию разрывных нарушений или дизъюнктивных дислокаций . Различают нарушения без существенного смещения по ним и нарушения со смещениями. Нарушения без смещения – это трещины. Они различаются по ширине (от миллиметров до нескольких метров), по протяжённости (от первых сантиметров до десятков километров), по глубине, форме (прямолинейные, дугообразные и др.) и т.д. Кроме трещин тектонического происхождения существуют трещины экзогенного (нетектоничекого) происхождения – трещины усыхания, оползней, обвалов, расширения пород, отслаивания и др.


Дизюнктивное нарушение; a-b - вертикальное смещение

К нарушениям со смещением относятся сбросы, взбросы, сдвиги и надвиги. Элементами тектонических нарушений являются: сместитель, крылья, угол наклона сместителя амплитуды смещения.

Сместитель – это плоскость, по которой происходит смещение. Угол наклона сместителя может варьировать от нескольких градусов до 80-90 o . Крылья – толщи пород, расположенные по обе стороны сместителя. При наклонном положении сместителя крыло, которое располагается над ним, называется висячим крылом, а расположенное под ним – лежачим. Амплитуда смещения – величина относительного перемещения пластов. Различают амплитуду смещения по сместителю, вертикальную, горизонтальную, стратиграфическую.

Одной из наиболее характерных форм разрывных нарушений является сброс . Это нарушение, у которого сместитель наклонён в сторону опущенного крыла (независимо от того, является оно висячим или лежачим). Если же сместитель наклонен в сторону приподнятых пород и уходит под них, то такое нарушение называется взброс . В отличие от описанных типов нарушений сдвигом называется разрывное нарушение, у которого перемещение происходит преимущественно в горизонтальном направлении, а сместитель расположен вертикально. Часто (или почти всегда) сбросы и сдвиги проявляются совместно и называются сбросо-сдвигами и сдвиго-сбросами.

Надвигом называется дислокация с разрывом пластов и надвиганием одного крыла на другое по относительно пологой или горизонтальной плоскости. Это нарушение взбросового типа, возникающее обычно вместе со складчатостью. Выделяют крутые (более45 o), пологие (менее45 o) и горизонтальные надвиги. Эти структуры широко проявлены в складчатых областях. Надвиг с большим горизонтальным перемещением называется шарьяжем , у которого висячее крыло может перемещаться на многие километры и даже на десятки километров.

Сбросовые нарушения часто проявляются в виде систем сбросов и взбросов. При этом образуются своеобразные структуры.

Грабен – опущенный участок земной коры ограниченный параллельными сбросами значительной протяжённости.
Горст – приподнятый участок земной коры, заключенный между параллельными разломами.

Несколько параллельных ступенчато расположенных грабенов образуют сложный грабен. Это относится к структурам Великих африканских озёр (Танганьика, Альберта, Рудольфа), рифту Красного моря, рифту озера Байкал, Рейнскому грабену и др.

Наиболее крупные надвиги и шарьяжи, характеризующиеся перемещениями пород на десятки километров по пологим, горизонтальным и волнистым поверхностям называются покровами . В покровах выделяются перемещённые массы висячего крыла, называемые аллохтоном , и оставшееся на месте лежачее крыло, называемое автохтоном . Покровы развиваются в областях со сложным покровно-складчатым строением. Они широко распространены в Альпах, Апеннинах, Гималаях, Карпатах, центральном и юго-восточном Кавказе, на западных склонах Урала, Верхоянье, Алтае и других областях.

Осадочные горные породы представляют собой относительно трудный объект для изучения, распознавания о. г. п. друг от друга в силу зачастую слабой выраженности особенностей состава и строения той или иной о. г. п. и большой схожести их между собой. Для некоторых типов о. г. п. затруднительно дать краткие описания, указать какие-либо определённые их свойства, которые позволили бы безошибочно отличать их друг от друга. Поэтому от изучающего требуется большая внимательность и тщательность при изучении о. г. п.

Терригенные (обломочные) о. г. п. образуются путём накопления после некоторого переноса механических частиц - обломков ранее существовавших минералов и горных пород, распавшихся на обломки в результате выветривания (главным образом физического) или при разрушительной деятельности воды, ветра, льда, морского прибоя.

Классификация терригенных о. г. п. строится исходя из: а) величины обломков; б) степени их окатанности; в) рыхлости или сцементированное™, и сводится к следующей таблице (табл. 1).

Таблица 1

Размер обломков (в мм)

Рыхлые ОГП

Сцементированные ОГП

неокатанные

окатанные

неокатанные

окатанные

100 и более

Глыбовая

Глыбовый

конгломерат

Галечник

Конгломерат

Дресвяник

Гравелит

Суглинок

Песчаник

Алевролит

(специальных терминов нет, используют «песчаник», «алевролит», «аргиллит»)

При рассмотрении таблицы обратите внимание на следующее.

  • Для сцементированных обломочных ОГП, в отличие от рыхлых, т. е. сыпучих в сухом состоянии (кроме глин, супесей и суглинков), важно наличие какого-либо вещества, заполняющего промежутки между обломками и играющего роль природного цемента. По составу этот цементирующий материал может быть карбонатным, глинистым, железистым. Часто в качестве цемента выступает более тонкий обломочный же материал, например конгломерат на песчаном (обязательно, конечно, с участием глины) цементе.
  • Окатанность обломков влияет на название породы в интервале от глыб-валунов до дресвы-гравия, т. е. в пределах, доступных для визуального (на глаз) определения степени окатанности обломков. В песках и песчаниках степень окатанности зёрен устанавливается уже только под микроскопом, поэтому нет различий в названиях этих пород с окатанными или неокатанными песчинками. Тем более это различие теряет смысл для алевритов-алевролитов, частички которых при переносе в силу мизерных размеров окатывания вообще не испытывают.
  • В таблицу внесены породы смешанного состава - супеси - смесь песчаных и алевритовых частиц с глинистыми при преобладании первых, суглинки - то же при преобладании вторых. По сути, эти породы рыхлые, но в силу склеивающего действия глинистых частиц они не сыпучие, как песок или алеврит.

Уплотнённые и сцементированные супеси и суглинки специальных названий не имеют и относятся визуально к тонкозернистым песчаникам, или алевролитам, или аргиллитам.

  • Глины примечательны своим свойством, отличающим их от всех остальных пород, - способностью неоднократно при намокании давать пластическую массу, а при высыхании твердеть. Связанность глин обусловлена тем, что силы слипания глинистых частиц гораздо сильнее, чем их тяжесть. Отнесение глин к обломочным породам в известной мере условна, т. к. глинистые частички обломками в полном смысле этого слова не являются. В общем случае они - результат химического выветривания, хотя есть данные, что морозное выветривание в состоянии чисто механически раздробить горные породы до частиц, по размерам сравнимым с глинистыми.
  • Аргиллиты - уплотнённые, потерявшие пластичность глины. Это тёмно-серые, серые, плотные, с раковистым изломом, очень тонкозернистые или без видимого зернистого строения породы.

У начинающих исследователей вызывает затруднения определение обломочных г. п. с размерами частиц менее 0,2...0,3 мм - мелкозернистых песчаников, алевролитов, супесей, суглинков, аргиллитов. Отличие супесей и суглинков от песков и алевролитов указано выше, от глин же они отличаются на ощупь - при растирании между пальцами или разжёвывании комочка породы чувствуется присутствие твёрдых песчано-алевритовых частиц. Глины же разминаются без ощущения присутствия в них твёрдых частиц.

Для отличия мелкозернистых песчаников, алевролитов и аргиллитов можно рекомендовать следующее простое, хотя и не очень строгое правило: если на глаз (или под лупой) можно определить размер зерен, то это песчаник; если видно, что порода зернистая, но размер зёрен определить нельзя, то это, скорее всего, алевролит; если же зернистости на сколе не видно, то это аргиллит.

Органогенные о. г. п. образуются в результате накопления остатков раковин, колониальных построек (типа коралловых рифов), минерализованных скелетов ранее существовавших организмов. К органогенным о. г. п. относятся также скопления самих организмов, образующих группу каустобиолитов. Приведенное понимание органогенных о. г. п. не охватывает всего их разнообразия, ибо существует большая группа пород, при образовании которых несомненную или даже главнейшую роль играли бактерии и другие микроорганизмы, создававшие условия, химическую среду, способствующую осадконакоплению. Речь идёт о некоторых железных рудах, известняках и других породах, но, к сожалению, явных следов участия организмов в образовании таких пород в них незаметно и воспринимаются они, во всяком случае, на глаз, как образовавшиеся чисто химическим путём.

Таким образом, отличительной особенностью органогенных пород является явное присутствие в породе большого количества самих организмов или остатков их жизнедеятельности.

Наиболее распространёнными являются органогенные известняки, состоящие из скоплений целых раковин или колониальных построек извсстьвыдсляющих морских организмов - моллюсков, пслсципод, брахиопод, кораллов, морских лилий и других. Не менее часто встречаются органогенно-обломочные (детритусовые) известняки, состоящие из обломков (результат действия волноприбоя - тех же раковин и колониальных построек). Смешанное хемогенно-органогенное происхождение имеет обыкновенный писчий мел, хотя видно это только под микроскопом.

Некоторые организмы в процессе своей жизнедеятельности выделяют не известь, а кремнезём. Наиболее распространённой ОГП в этой группе является диатомит, состоящий из скопления микроскопических раковинок водоросли диатомея.

Из каустобиолитов торф, бурый и каменный уголь хорошо известны и пояснений не требуют. Горючие сланцы, углистые сланцы, представляющие собой результат накопления алевритоглинистого материала вместе с растительными и животными остатками, внешне напоминают аргиллиты и глинистые сланцы, но отличаются черным цветом и явной примесью углистого вещества или запахом нефтепродуктов, сероводорода.

Хемогенные о.г.п. (табл. 2). Эти породы образуются путём выпадения вещества из истинных - соли (карбонаты, сульфаты, хлориды) и коллоидных - глины, кремнистые, железистые и марганцевые соединения - растворов. К хемогенным образованиям относятся также элювиальные глины коры выветривания. Отличительными признаками хемо- генных о. г. п. являются: отсутствие обломочной структуры, органических остатков, часто - кристаллическое или оолитовое строение.

Таблица 2

Группы по общему химическому составу

При рассмотрении таблицы, определении и описании хемогенных ОГП необходимо обратить внимание на следующее.

Для карбонатов, галоидов и сульфатов характерно кристаллическое строение. Даже очень тонкозернистые известняки узнаются по многочисленным точечным блёсткам граней кристалликов кальцита на свежем сколе породы. Цвет известняков преимущественно светлосерый, но и тёмно-серый и красно-бурый в зависимости от примесей глины, органического вещества, окислов железа.

Доломиты очень похожи на известняки. Иногда их можно отличить (если не прибегать к реакции с НС1, с которой доломиты, в отличие от известняков, не реагируют) по более зернистому, «сахаровидиому» свежему сколу и слабой желтовато-белёсой мучнистой (напоминает ссохшуюся муку) корочке на выветрелой поверхности.

  • Отнесение глин и аргиллитов к хемогенным породам столь же относительно, как и выше к обломочным. Явных, видимых на глаз, отличий между «обломочными» и «хемогенными» глинами нет. Белые каолиновые глины и красные латериты легко узнаются. Выше они рассматривались как продукты выветривания, но столь же правомерно рассматривать их как самостоятельные виды о. г. п. Буро-красные с оолитовым строением бокситы бывают элювиальные, карстовые и осадочные (переотложенные в прибрежных условиях латериты).
  • Мергель - порода промежуточная по составу между известняками и глинами. Внешне она походит на аргиллит, но обычно светлее и реагирует с НС1.
  • Силицилиты - яшмы и лидиты - отличаются явным кремнистым (отдалённо напоминающие опал) плотным афанитовым или очень тонкозернистым строением, раковистым изломом, острыми рёбрами сколов, заметной крепостью.
  • Яшмы - разноцветные; лидиты - чёрные, похожие на аргиллиты, но крепче их. Опоки и трепелы - светлые микро- и тонкозернистые, иногда землистые породы, состоящие из опала, часто микропористые, а потому лёгкие.
  • Оолитовые железные руды почти всегда в той или иной степени лимонитизированы, а потому легко узнаются по бурой окраске и оолитовому строению. Сидериты - также от светло- до тёмно-бурых, часто мелкоолитовые, но могут быть и сплошными, однородными.

Осадочные горные породы занимают внушительную площадь земного шара. К ним относится большая часть всех полезных ископаемых, которыми так богата наша планета. В большинстве своем осадочные породы располагаются на материковой части, континентальном склоне и шельфе, и лишь незначительная часть - на дне морей и океанов.

Происхождение осадочных пород

Под разрушительным воздействием солнечного света, температурных колебаний, воды происходит выветривание твердых магматических пород. Они образуют различные по размеру обломки, которые постепенно распадаются до мельчайших частиц.

Ветер и вода переносит эти частицы, которые на каком-то этапе начинают оседать, образуя тем самым рыхлые скопления на поверхности суши и на дне водных водоемов. Со временем они затвердевают, уплотняются, приобретают свою собственную структуру. Так происходит образование осадочных горных пород.

Рис. 1. Осадочные горные породы

Как и метаморфические породы, осадочные относятся к вторичным горным породам. Они лежат только на поверхности земной коры, занимая около 3/4 площади всей планеты.

Поскольку практически все строительные работы ведутся на осадочных породах, очень важно в совершенстве знать свойства, состав и «поведение» этой разновидности горных пород. Этими и многими другими вопросами занимается наука инженерная геология.

Главным признаком осадочных пород является слоистость, уникальная для каждого природного соединения. В результате сдвигов земной коры первоначальные формы залегания осадочных пород нарушаются: появляются всевозможные разрывы, трещины, разломы, складки.

ТОП-4 статьи которые читают вместе с этой

Рис. 2. Слоистость осадочных пород

Классификация горных пород

Процесс осаждения может проходить различными способами. В зависимости от его специфики выделяют несколько основных групп осадочных пород:

  • обломочные - формируются под действием выветривания и дальнейшего переноса частиц магматической породы;
  • хемогенные - результат выделения и осаждения веществ, которые образуются из насыщенных водных растворов;
  • биохимические - образуются вследствие химических реакций при участии живых организмов;
  • биогенные - результат разложения остатков растительных и животных организмов.

В природе нередко встречаются смешанные группы осадочных пород, на формирование которых оказало влияние сразу несколько факторов. Так, одним из ярких примеров осадочных горных пород смешанного типа является известняк, который в равной степени может иметь хемогенное, органогенное, биохимическое или обломочное происхождение.

Рис. 3. Известняк

Что мы узнали?

Осадочные породы занимают огромные площади поверхности Земли. Они могут располагаться как на суше, так и на дне морей и океанов. Любая осадочная порода формируется из разрушенных и видоизмененных магматических пород. В основе классификации пород лежат особенности процесса осаждения, который может происходить под влиянием многих факторов.

Осадочные породы классифицируются по происхождению и условиям образования.

По происхождению выделяют следующие генетические типы осадочных пород: механические осадки (обломочные горные породы), химические осадки, органогенные осадки, пирокластические осадки.

Осадочные породы обломочного происхождения представляют собой продукты механического разрушения горных пород, накапливающиеся и сохраняющиеся в рыхлом или сцементированном состоянии.

По величине обломков различают такие фракции зернового (гранулометрического) состава обломочных пород: грубообломочная - величина обломка и зёрен от 2 и более мм; среднеобломочная (песчаная) – от 0,05 до 2мм; мелкообломочная (пылеватая) – от 0,001до 0,05мм; тонкообломочная (физическая глина) – менее 0,001мм.

В зависимости от гранулометрического состава обломочные породы подразделяются (таблица 2):

Грубообломочные породы – обломки более 2мм в диаметре (гравий, щебень, галечник или сцементированные разности (брекчии, гравелиты, конгломераты);

Песчаные породы – зёрна диаметром 0,05…0,2мм (пески, песчаники – рисунок 53, 54, 55, 56);

Рисунок 53 – Песчаник Рисунок 54 – Песчаник медистый

Рисунок 55 – Песчаники Рисунок 56 – Песчаник ожелезнённый

Глинистые породы – частицы менее 0,05мм в диаметре, т. е. пылеватые и глинистые частицы (супеси, суглинки, глины);

Обломочные породы смешанного состава (гравелистые пески, валунники, супеси, суглинки, глины).

Таблица 2 – Классификация обломочных осадочных пород

Размер обломков, мм

Обломочные породы

Фракции по ГОСТ

углова-тые

окатан-ные

сцементированные из частиц

углова-тых

окатан-ных

Грубообло-мочные

Конгло-мераты

Валунная

(каменистая)

Галечник

Галечнико-вая

(щебенис-тая)

Гравийная

(дресвяная)

Песчаные

Песчаные

Песча-ники

Песчаная

Пылеватые

Пылеватые

Алевро-литы

Пылеватая

Менее 0,005

Глинистые

Глинистые

Аргил-литы

Глинистая

Осадочные породы химического происхождения образуются при осаждении минерального вещества из истинных и коллоидных растворов. Осаждение происходит в лагунах, реже пресноводных озёрах или у мест выхода подземных вод на поверхность.

Органогенные осадочные породы слагаются из скелетных остатков организмов. Различают: зоогенные осадочные породы, слагающиеся из скелетных частей животных организмов (известняки, кремнистые породы), фитогенные, состоящие из остатков растительного происхождения (уголь, некоторые известняки и другие) и смешанные (зоофитогенные) из остатков животного и растительного происхождения. Поскольку процессы химического и органогенного осаждения минеральных веществ протекают одновременно, то образующиеся породы объединяют в одну группу.

Пирокластические породы образуются путём осаждения твёрдых продуктов вулканических извержений – вулканического пепла, лапиллей, бомб. Минеральное вещество пирокластических пород магматического происхождения, а способ образования осадочный (вулканические туфы – рисунок 57, туфобрекчии и другие).

Рисунок 57 – Вулканический туф

В зависимости от условий образования осадочные породы объединяются в фациальные группы:

Континентальные фации – отложения болот, рек, озёр, ледниковые, пустынь, горных склонов;

Морские фации – формируются в зоне прибоя, в шельфовой полосе на материковом склоне и в глубоководных частях океана;

Лагунные фации, включающие соленосные, угленосные и другие отложения лагун.

Фациальные условия оказывают значительное влияние на состав, строение, сложение и условия формы залегания осадочной породы.

Структура (строение) осадочных горных пород определяется их гранулометрическим составом, взаимным расположением и способом скрепления частиц.

Различают типы структур:

Обломочные (сцементированные или несцементированные) свойственные грубо-, средне- и мелкообломочным горным породам;

Алевритовые и пелитовые, характерные для тонкообломочных пород пылевато-глинистых);

Кристаллически-зернистые присущи многим химическим осадочным породам и подразделяются на – яснозернистые (диаметр зёрен более 0,1 м), тонкозернистые (диаметр 0,1 - 0,01 мм), микрозернистые и скрытозернистые (диаметр ≤0,01 мм - оолитовая, органогенная, органогенно-детритусовая).

В осадочных породах различают типы цемента:

Базальтовый, когда обломочный материал заключён в массу цементирующего вещества, а зёрна не соприкасаются друг с другом;

Контактный – цементация наблюдается в местах соприкосновения зёрен;

Цемент выполнения – когда цемент выполняет промежутки между соприкасающимися минеральными зёрнами;

Смешанный – сочетающий два или несколько типов цемента.

В зависимости от состава цементирующего вещества выделяют известковые, гипсовые, кремнистые, железистые, глинисто-известняковые песчаники, конгломераты, брекчии.

Структура осадочных горных пород характеризуется величиной обломков, слагающих породу, а у химических осадков - величиной кристаллов. Породы крупнокристаллические состоят из кристаллов размером более 1мм, среднекристаллические - 1,0…0,1мм, скрытокристаллические - 0,1…0,01мм, пелитоморфные - меньше 0,01мм. Осадочные горные породы, состоящие из хорошо сохранившихся скелетов организмов, имеют биоморфную структуру; из обломков скелетов - детритусовую

К структурным характеристикам относятся скважность (пористость) осадочных пород. Различают пористость грубую, крупную, мелкую, тонкую (глины).

Пористость может быть первичной (возникает при формировании самой породы – межзерновая пористость), вторичная – появляется в сформировавшейся породе (при выщелачивании легкорастворимых минералов). Поры бывают мелкие, крупные и в виде каверн. Общая пористость суглинков может составлять 40…50%, песков – 35…40%. Поры могут быть заполнены водой, газом, органическим материалом.

Текстура (сложение) осадочной породы обычно слоистая; реже наблюдается беспорядочное сложение (когда зёрна минералов располагаются хаотично). Под слоистостью понимают сложение осадочных пород, выраженное в многократной смене прослойков, отличающихся друг от друга по зерновому и минеральному составу, распределению минеральных составляющих, по окраске и другим признакам.

Слоистость (рисунок 58, 59, 60) бывает параллельной, косой и диагональной. Иногда она бывает ритмичной, когда отдельные прослои ритмично повторяются в определённой последовательности.

Формы залегания осадочных пород (рисунок 61). Осадочные породы чаще всего залегают в виде пластов (слоёв) – плитообразных минеральных тел, ограниченных параллельными поверхностями – плоскостями напластований, которые образуются в процессе периодического накопления осадков в водной среде и на поверхности материнских пород.

Рисунок 58 - Основные типы слоистости осадочных пород:

а - горизонтальная; б, д - косые; в - параллельная; г - линзовая;

е - диагональная; ж - волнистая

Рисунок 59 – Разновидности косой слоистости

1 - диагональная (косвенная); 2 - перекрестная; 3 - речной тип косой слоистости (сечение по течению реки); 4 - косая слоистость потоков с непостоянным положением русла (сечение перпендикулярно направлению течения)

Напластования отделяют пласт от подстилающего и покрывающего слоёв. Нижняя граничащая поверхность пласта называется ложе, верхняя – кровлей пласта, а расстояние между ними – мощностью пласта (слоя). В составе слоя может наблюдаться микрослоистость, отражающая осадконакопление в различные времена года. Она характерна для озёрных и речных отложений. В слое горной породы могут быть тонкие слои других пород, называемые прослоями (в слое песка тонкий прослой глины).

Рисунок 60 - Разновидности слоистых толщ осадочных пород:

а - нормальная; б - косая; в - перекрестная; 1 - песок; 2 - глина; 3 - глина опесчаненная; 4 -границы трансгрессии; 5 - известняк; 6 - аргиллит;

7 - доломит; 8 - иловатая глина

Рисунок 61 – Формы залегания осадочных пород: а, б - горизонтальное; в - выклинивание пластов; г, д - линзовидное; е - моноклинальное;

ж - складчатое, волнистое; 1, 2, 3 - пласты; 4 - прослойки в пласте;

5, 6 - выклинивающие пласты; 7 - линзы

Мощность пластов относительно постоянна, но может быть изменчивой, непостоянной. В этом случае наблюдается явления раздува – резкого увеличение пласта и пережима – резкого местного уменьшения мощности пласта.

Постоянное уменьшение пласта вплоть до его исчезновения называется выклиниванием пласта. Постоянная мощность пласта характерна для толщ морских осадочных пород (до сотен и тысяч метров). Континентальные отложения четвертичной системы залегают непосредственно под слоем почвы, имеют относительно небольшую мощность (10…50м), и отличаются частыми раздувами и пережимами, и для них характерны линзовидные и гнёздообразные формы залегания. Комплекс слоёв, объединённых сходством состава или возраста, или один слой значительной мощности, называют толщей.

Линзы и линзовидные залежи - пласты, которые выклиниваются во всех направлениях, образуя тела ограниченного по площади распространения. Характерны для озёрных, речных и лагунных фаций.

Гнездом или карманом называют такие неправильные формы залегания осадочных пород, которые отличаются быстрым выклиниванием на коротких расстояниях. Характерны для ледниковых отложений и для образований коры выветривания.

Осадочные породы могут залегать куполообразными (известняки коралловых рифов) или штокообразными формами (соли, гипс). При последовательном наслоении минеральных масс слои сменяют друг друга в соответствии с эволюцией органического мира. Такое залегание толщ называется согласным.

Рисунок 62 - Типы несогласий в залегании горных пород

1 - стратиграфическое несогласие (перерыв в осадконакоплении с размывом поверхности горных пород, отложенных до перерыва); 2 и 3 - угловое несогласие (сочетание дислоцированных пород с более молодыми недислоцированными); 4 и 5 - угловое несогласие (сочетание двух толщ, дислоцированных с различной степенью интенсивности); 6 и 7 - угловое несо-гласие (сочетание двух различно дислоцированных толщ с третьей, залегающей горизонтально); 8 - тектоническое несогласие (сочетание различно дислоцированных толщ по разлому); АБ - линия разлома

Когда образование слоёв имеет перерыв и древняя толща размывается, прежде чем отложилась молодая и нарушается соответствие непрерывности смены органических остатков, такое отложение называется несогласием (рисунок 62). Несогласия, обусловленные тектоническими движениями земной коры, представляют собой молодые напластования, залегающие с угловым несогласием относительно подстилающей древней толщи.

По своему содержанию и методам исследования «Литология» очень близка к такому разделу об осадочных образованиях, как «Седиментология». Неточность определения «Литологии» приводит к путанице во взаимоотношениях её с «Седиментологией». Многие считают «Литологию» частью «Седиментологии». Так по Vatan (1955) «Область седиментологии значительно более обширна, чем область петрографии осадочных пород.» . Другие исследователи, например, , процессы седиментологии относят к стадиям литогенеза, то есть рассматривают «Седиментологию» как часть «Литологии». Имеется также третье направление, например П. П. Тимофеев, О. В. Япаскурт и др.

Реальные взаимоотношения устанавливаются с позиции дилеммы прямая задача - обратная задача .

Прямая задача - определение особенностей формирования осадков, из которых образуются в дальнейшем осадочные горные породы, в различных физико- механических и физико- химических условиях. Большой вклад в решение этой проблемы внёс Н. М. Страхов (1900-1976) , .

Обратная задача - на основе анализа наблюдаемых свойств осадочных пород - восстановление условий их образования. Существенный вклад в решение этой проблемы внёс Л.В.Пустовалов , а также практически все геологи и, в частности, литологи, которые занимаются изучением осадочных пород.

Опираясь на это разделение типов задач, можно утверждать, что «Седиментология» - это форма решения прямой задачи, тогда как «Литология» - обратной задачи. Несмотря на их близость, это - задачи, решения которых направлены в противоположные стороны. Учитывая вышесказанное, можно говорить, что конечной целью «Литологии» является определение палеогеографических условий формирования осадочных пород .

Классификация осадочных горных пород

В формировании осадочных горных пород участвуют различные геологические факторы: разрушение и переотложение продуктов разрушения ранее существовавших пород, механическое и химическое выпадение осадка из воды, жизнедеятельность организмов. Случается, что в образовании той или иной породы принимает участие сразу несколько факторов. При этом некоторые породы могут формироваться различным путем. Так, известняки, могут быть химического, биогенного или обломочного происхождения. Это обстоятельство вызывает существенные трудности при систематизации осадочных пород. Единой схемы их классификации пока не существует.

Различные классификации осадочных пород были предложены Ж.Лаппараном ( г.), В. П. Батуриным ( г.), М. С. Швецовым ( г.) Л. В. Пустоваловым ( г.), В. И. Лучицким ( г.), Г. И. Теодоровичем (1948 г.), В. М. Страховым ( г.), и другими исследова­телями.

Однако для простоты изучения применяется сравнительно простая классификация, в основе которой лежит генезис (механизм и условия образования) осадочных пород. Согласно ей осадочные породы подразделяются на обломочные , хемогенные , органогенные и смешанные .

Генезис осадочных горных пород

«Осадочные горные породы» объединяют три принципиально различные группы поверхностных (экзогенных) образований, между которыми практически отсутствую существенные общие свойства. Собственно из осадков образуются хемогенные (соли) и механогенные (обломочные, частично терригенные) осадочные породы. Образование осадков происходит на поверхности земли, в её приповерхностной части и в водных бассейнах. Но применительно к органогенным породам довольно часто термин «осадок» не применим. Так если осаждение скелетов планктонных организмов ещё можно отнести к осадкам, то куда отнести скелеты донных, а там более колониальных, например, кораллов, организмов не ясно. Это говорит о том, что сам термин «Осадочные горные породы» является искусственным, надуманным, он является архаизмом. В следствие этого В. Т. Фролов пытается заменить его термином «экзолит». Поэтому анализ условий образования этих пород должен происходить раздельно.

В классе механогенных пород первые два понятия являются равнозначными и характеризуют разные свойства этого класса: механогенный - отражает механизм образования и переноса, обломочный - состав (состоит практически из обломков (понятие строго не определено)). Понятие Терригенный отражает источник материала, хотя механогенными являются и значительные массы обломочного материала, образуемого в подводных условиях.

Механогенные осадочные породы

Эта группа пород включает две главные подгруппы - глины и обломочные породы. Глины - специфические породы, сложенные различными глинистыми минералами: каолинитом , гидрослюдами, монтмориллонитом и др. Глины выделившиеся из взвеси называются водноосадочными глинами в отличие от остаточных глин, присутствующих в сохранившихся корах выветривания.

Общие свойства обломочных пород

Обломочные порода - главнейшая часть механогенных пород. Среди осадочных пород «обломочные породы» (далее ОП) представляют собой одни из самых распространенных классов горных пород. Объем этого понятия соответствует представлениям ранних периодов становления литологии. Изначально к ним относили породы, содержащие собственно обломки пород и минералов, с одной стороны, и продукты их механического (физического) преобразования -окатанные зерна пород и минералов- с другой. Но определение «обломка» отсутствует. Такая же ситуация и с антагонистом «брекчии»- галькой: что такое галька? Есть узкое определение понятия «галька», по которому галька ограничена в линейных размерах. Однако в литологии есть также объекты, близкие по смыслу гальке, но иных размеров: валуны , гравий и т. д. В широком смысле «галька» (или окатыш по Л. В. Пустовалову)- «это окатанные водой обломки горных пород». Имеется существенное генетическое различие между обломками и окатышами. «Обломочные породы» - породы, сложенные только обломками материнских пород (минералов). Окатыши не являются обломками в прямом смысле и потому не могут входить в группу «обломочных пород». Они составляют самостоятельную, весьма распространенную группу осадочных образований (конгломероиды ), сложенную полностью или преимущественно окатышами различных размеров (галька. гравий, конгломераты , галечники, гравелиты и пр.) , .

Выделить следующие особенности состояния породы:
I.Сложение породы - вид представления зерна в породе.
II. Cтроение породы .
Для определения породы использовано понятие о зерне З = (Z = Zerno): это -любой формы и размеров твердое моно- или многофазное образование, имеющее естественную фазовую границу, отделяющую его от других подобных, может быть и сходных по внутренним свойствам, образований. Тогда образец сложен некоторой породой П , если образец - твердое, созданное естественным путем, многофазное образование, сложенное зернами З различного состава. В образце, как элементарной части геологического пространства и сложенном множеством зёрен различного состава и размера, возникает новое качество - взаимоотношения зерен между собой.

В связи с этим в осадочных горных породах выделяются два уровня свойств:

  • Свойства единичного зерна- состав, размер, форма и особенности её изменения;
  • Свойства совокупности зёрен - размерность , структура и текстура .
Свойства единичного зерна

Сюда входят: состав, размер, форма и особенности её изменения;

Размер зёрен

В подавляющем большинстве случаев размер зерен () измеряется в трёх направлениях, согласно приписываемой им виртуальной системе координат. Ориентировка этой системы координат относительно внутренних свойств зёрен не определена. Наибольший размер (длина) обозначается через , средний размер (ширина) - и минимальный размер (толщина) - . Конкретные величины значений этих измерений колеблются в широких пределах. Порядок изменения этих величин также неизвестн: если произвольно взять два соседний зерна и в упорядоченной по размерам совокупности зёрен, то величина не определена.

Поскольку пределы изменения размерных параметроы достаточно велики, то создаются специальные шкалы измерений, в которых указываются минимальные и максимальные пределы изменения размеров зёрен определённой группы, получившие специальные названия (пелиты, алевриты, псефиты (пески) и пр.). В практие это деление (выделение гранулометорических фракций) осуществляется с помощью "ситового" анализа . Метод сильно искажает реальные размеры и соотношения между ними в зёрнах , .

Форма зёрен

Наименее изученная часть свойств обломочных пород. Значение формы зерна () определяется её ролью в гидродинамике переноса зёрен водными потоками , влияя на дальность переноса . Из российских ученых в первые об этом, видимо, заговорил И. А. Преображенский ( , С. 557). Позже этому фактору уделял внимание Ю. А. Билибин на примере изучения морфологии золотин из россыпей различного типа. К. К. Гостинцев приводит элементы геометрической классификации форм зерен, выделив обобщенные формы : сферы (шаровидные формы), эллипсоиды, параллелепипеды , диски , чешуйки , таблички и др. Классификация форм зёрен приведена в , .

В "Петрографии осадочных пород" в качестве аналога формы не обосновано широко используется понятие "окатанность", как степень округлённости углов в зёрнах. Анализ показал, что "окатанность" к форме зёрен прямого отношения не имеет, но отражает степень изменения этой формы (физического метаморфизма пород).

Можно выделить основные стадии механогенного метаморфизма:

1. "совершенно не окатанные, остроугольные зерна пород (щебень , хрящ , дресва, каменная крошка, зерна- осколки)"; 2. зерно окатано так, что еще можно установить ее изначальную форму;

эта стадия позволяет проводить дробную классификацию на основе уже существующих представлений об обломочных породах.

3. «вполне окатанные зерна с одинаково сглаженной поверхностью обтекаемой формы». Начальная форма уже не определима. Конечная форма описывается уравнениями второго порядка .

Состав зёрен

Установлена зависимость состава зёрен от размера зёрен. Эта зависимость проявляется в том, что зёрна, размер которых мм, существенно сложены минералами и их обломками. Зёрна, размер которых мм, сложены существенно породами. Это позволяет всё многообразие рыхлых обломочных пород разделить на минакласты (зёрна сложены преимущественно минералами (миналы)) и литокласты (- преимущественно породами).

В литокластах форма зёрен уже существенно зависит от состава зёрен. Здесь начинают сказываться внутренние свойств пород.

Б.Свойства совокупности зёрен

В определении понятия «горная порода» выделены две части – вещественная и пространственная. К параметрам, связанным с пространственным расположением зерен, относятся: морфологические и линейные характеристики зерен; пространственное расположение центров тяжести зерен (не изучено); пространственные взаимоотношения зерен, обусловленные различиями в размерах и форм зерен. Формирование обломочных пород, как способ формирования некоторой совокупности, или множества, зёрен приводит к появлению новых и существенно важных свойств, таких, как структура и текстура.

Возможны установления определённых отношений между размерными параметрами. В минакластах зёрна не изометричны, их размерные параметры соответствуют неравеству , а это означает возможное наличие функциональных зависимостей между ними. Кроме того выявлены зависимости вида , где -периметр. В этих случаях параметр представляет собой обобщённый коэффициент уплощённости, то есть чем он меньше, тем более уплощённым в среднем является зерно. Так для зёрен алмаза , для кварца , для золотин .

Свойства структур обломочных пород

На практике использование понятия "структура" в основном свелось к характеристике размерных параметов зёрен. В связи с этим понятие "структура" в петрографии не соответствует понятию "структура" в кристаллографии, структурной геологии и других науках о строении вещества. В последних "структура" больше соответствует понятию "текстура" в петрографии и отражает способ заполнения пространства. . Если принять, что "структура" является пространственным понятиям, то следующие структуры нужно считать бессодержательными: вторичные или первичные структуры и текстуры; кристаллические, химические, замещения (разъедания, перекристаллизации и т. д.), деформационные структуры, ориентированные (3-280), остаточные структуры (3-282) и пр. (в скобках- номер тома и номер структуры в списке). Поэтому эти "структуры" названы "ложными структурами" .

Структура – это множество структурных элементов, характеризуемое размерами зерен и их количественными соотношениями.
При проведении конкретных классификаций обычно используются линейные параметры зерна с последовательностью

хотя количественные оценки распространенности осуществляются через площадные (процентные) параметры. Эта последовательность может иметь значительную длину и никогда не строится. Обычно же говорят только о пределах изменения параметров , называя максимальные (max) и минимальные (min) значения размеров зерен.

Одно из направлений представления - использование числовых рядов, которые строятся также как и указанная выше последовательность, но вместо () ставиться знак суммы (). Свертка всех последовательностей осуществляется объединением равных элементов и сложением их площадей. Тогда имеем последовательность:

Выражение означает, что измерена площадь , занимаемая всеми сечениями тех зерен , размер которых равен .

Эта особенность зёрен позволяет проводить числовой анализ полученных соотношений. Во- первых, параметр можно рассматривать как значения координатной оси и таким образом строить некоторый график ( , ). Во-вторых, последовательность можно ранжировать, например, по убыванию коэффициентов , в результате получается ряд

Именно этот ряд и называется структурой данного сечения породы, он же является и определением понятия «структура». Параметр есть элемент структуры, а параметр – длина структуры. По построению . Такое представление структуры позволяет проводить сравнение различных структур между собой.

Структура элементарна , если , т.е. . Структура совпадает со своим элементом, т.е. или %. Тогда порода сложена зернами, размерные параметры которых равны друг другу. Эта структура называется равномерно-зернистой . Множество равномерно-зернистых структур образуют класс равномерно-зернистых структур , в котором каждая структура отличается параметром . Если , то структура образована зернами, размер которых изменяется в некоторых пределах. Это- структуры неравномернозернистые , их множество- класс неравномерно- зернистых структур . В неравномерно-зернистой структуре . Тогда и .

Класс неравномерно-зернистых структур является обобщением класса равномерно-зернистых структур. В классе неравномерно–зернистых структур выделяются подклассы:

1) подкласс собственно неравномерно–зернистых структур ; 2) подкласс порфировых структур (или структур включения ) класса неравномерно–зернистых структур. 3) подкласс порфировидных структур класса неравномерно–зернистых структур. От предыдущего подкласса отличается тем, что основная масса неравномерно–зернистая и отличие размеров порфировых зерен от размеров зерен основной массы менее резкое.

В петрографии обломочных пород эти подклассы не выделяются, хотя их аналоги распространены широко, например, песчаники с (включениями) гравием, галькой и пр. с образованием структур включения. В этих случаях основная масса называется цементом (базальным).
Подкласс порфировых структур (структур включения) объединяет также структуры, существующие в породах с миндалинами, овоидами, стяжениями и другими формами включений.

Изложенные характеристики структур позволяют получить решение важной в петрографии горных пород задачи: сравнение структур горных пород.

А. Равномерно-зернистые структуры и равны, если и .
Теорема: сложение двух равных равномерно-зернистых структур и дает равную им равномерно-зернистую структуру. Теорема: сложение нескольких равных равномерно-зернистых структур также дает равномерно-зернистую структура, равную структуре составных частей.
Следствие 1. Если образец с равномерно-зернистой структурой разделить на некоторое количество частей, то каждая часть образца породы будет характеризоваться равной ей равномерно-зернистой структурой.
Следствие 2. Если в образце породы с равномерно-зернистой структурой изучена некоторая часть образца породы, то порода этой части образца характеризует и всю породу.

Б. Сравнение неравномерно- зернистых структур. Основой анализа является выделение структур, в которых элементы расположены по убыванию размерных параметров. В этом случае первый элемент определяет название структуры на основе сравнения со специальной классификацией (эталоном).
Совершенно ясно, что с одним и тем же основанием может быть большое количество структур. Выделяются крайние случаи:

А). В обоих рядах порядок элементов одинаковый. б). Порядок элементов во втором ряду противоположен таковому первого ряда.

Степень близости обоих рядов определяется с помощью представлений теории перестановок .

Свойства текстур обломочных пород

Текстура является одной из важнейших понятий в петрографии горных пород. Текстура отражает способ заполнения пространства элементами структуры. Естественно, что расположение элементов структуры в пространстве во многом определяется условиями образования пород . Тем не менее, все текстуры имеют общие свойства, которые позволяют рассматривать текстуры независимо от условий образования пород.

Зерно – это элементарный объект горной породы. Размеры зёрен измеряются по осям – (на практике обозначаемые как ). Принято, что . Ось , располагающаяся вдоль оси , - главная . Плоскость , проходящую через оси и , - также главная . Ось . Зёрна отличаются по вещественному составу (), форме () и размерам (от Dimension – размерность), т.е. . Здесь , , - элементы структуры. Кроме того, зёрна в образце находятся в некоторых отношениях друг к другу, т.е. .

Если структурный элемент - это зерно образца, то пространственная часть образца имеет вид . Таким образом, текстура () – это множество зёрен образца, обладающих свойством:

.

Следовательно, текстура является понятием более высокого уровня обобщения, чем структура , поскольку в основу выделения текстур положены не только форма и состав зёрен, но и их структурные признаки.

Смысл выражения зависит от сущности параметра . Элементарные отношения между зёрнами представлены:

Зёрна в компактном множестве { З } размещаются так, чтобы главные плоскости этих зёрен совпадают. Тогда можно провести плоскости, касательные к поверхностям зёрен как снизу (подошва ПД ), так и сверху (кровля КР ). Если между этими плоскостями располагается по одному зерну, то слой можно назвать монослоем (обозначается через ). Нормальное положение монослоя – горизонтальное.

Основные типы текстур

Каждый монослой характеризуется параметрами: вещество M (материал), D, SR, OR . Поскольку , то монослои характеризуются параметрами и . Далее эти параметры записыватся в виде биекции . Если в соседних монослоях и и , то такие монослои будем называть тождественными (или эквивалентными). В таком случае граница между монослоями отсутствует (т.е. ). Если этими свойствами обладают все последовательно наслаиваемые друг на друга монослои, то между ними границы отсутствуют. В этом случае совокупность этих монослоев образует слой , а порода приобретает монолитную текстуру .

Это тип компактных монолитных текстур . Если же хотя бы один из компонентов свойств не совпадает с соответствующим компонентом свойств , то граница сохраняется (или ).

Если в образце присутствуют несколько монослоёв (слоёв), каждый из которых отличается хотя бы одним элементом текстуры от соседнего монослоя (или слоя), то имеет место слоистая текстура . Это тип компактных слоистых текстур . Эти типы исчерпывают все многообразие основных типов текстур.

Между монолитными текстурами и слоистыми текстурами существует принципиальное различие. В первом случае выявляются отношения между зёрнами породы. При этом устанавливаются признаки, определяющие текстуру самой породы: отношения между размерными параметрами (структура), отношения между формами зерен, ориентировка зерен. Тип монолитных текстур является единственным представителем текстур в породе.

В случае слоистой текстуры появляется новый вид отношения: отношение между слоями (слойками). Кроме вышеназванных признаков, определяющих текстуру породы, выполняющей слой, здесь появляются новые признаки, характеризующие отношения слоёв как геологических тел друг относительно друга: средних ориентировок зёрен одного слоя относительно ориентировок зёрен другого слоя, отношение между самими слоями; отношение между размерными параметрами одного слоя относительно размерных параметров другого слоя. Таким образом, слоистая текстура отражает более высокий уровень организации геологического материала. В породе слоистых текстур нет .

В практике геологических исследований часто фигурирует понятие «слоистая порода» (слоистый песчаник, слоистый алевролит и пр.). Под слоистой породой понимают породу, обладающую слоистой текстурой. В связи с изложенными выше соображениями это понятие необходимо признать не корректным. По определению порода с монолитной текстурой сложена зернами без признаков их пространственного разделения. В «слоистой породе» ситуация совершенно иная. Здесь слоистость обусловлена наличием слоёв (слойков), т.е. самостоятельных геологических тел, заполненных породами; в каждом слое порода имеет монолитную текстуру. Следовательно, образец с выявленной слоистой текстурой сложен набором пород, а к набору пород термин «порода» как единичный признак вообще не применим.

Классификация текстур. I . Тип компактных монолитных текстур .

Выделяются подтипы текстур:
А. Подтип текстур изотропных (массивных ). Параметры структурных элементов не изменяются вдоль (эталонных) линий, проходящих через образец в любом направлении. Во всех случаях зёрна располагаются статистически хаотично, беспорядочно в породе с равно– или разнозернистой массой. Это – подтип компактных монолитных массивных текстур (текстуры беспорядочная, плотная, неориентированная, однородная и др.).
Б. Подтип текстур анизотропных . Свойства породы изменяются с изменением ориентировки эталонных линий. Выделяются классы текстуры:
Ба. Класс компактных монолитных ориентированных текстур ; обусловлен особенностями строения основной массы породы. Сюда относятся текстуры с согласно ориентированными друг относительно друга зёрнами; иногда их называют гломерокристаллическими, сланцевыми, ориентированными текстурами и пр.

  • Бб. Класс компактных монолитных ориентированных линейных текстур ; обусловлен наличием ориентированных единичных структурных элементов при хаотичном расположении зерен вмещающей их массы; сюда относятся породы различных порфировых и порфировидных структур, в которых порфировые (порфировидные) зерна, миндалины и пр. являются единичными структурными элементами. Выделяются подклассы:
    • Бба. Ориентированные зерна не образуют единого сообщества и разбросаны по образцу бессистемно. По Н.А. Елисееву это параллельно-линейные текстуры .
    • Ббб. Ориентированные зерна (обычно пластинчатые кристаллы) образуют единое сообщество, проявляемое в виде плоско-параллельного «слоя», создавая видимость слоистой текстуры. По Н.А. Елисееву это плоско-параллельные (ложно слоистые) текстуры .
  • Бв. Текстуры, обусловленные наличием ориентированных структурных агрегатов, например, шлиров, обломков пород и пр. Это класс компактных агрегативных текстур (текстуры такситовые, атакситовая и пр.). Этот подкласс текстур специально не выделяется. Если же агрегат рассматривать как обобщенное зерно, то здесь также выделяются текстуры, определяемые расположением единичных структурных элементов. Поэтому можно выделить подклассы:
    • Бва. компактные агрегативные массивные текстуры ;
    • Бвб. компактные агрегативные параллельно-линейные текстуры ;
    • Бвв. компактные агрегативные плоско-параллельные текстуры .
II . Тип слоистых текстур .

За основу анализа взята пара соседних слоёв, имеющих четко выраженные элементы текстуры. Виды текстур, устанавливаемые на основе анализа этой пары, называются элементарными. Здесь уже на сцену выступает форма элементов текстур. Независимо от вида этой формы, их всех объединяет наличие некоторого радиуса R кр кривизны, на основе которого выделяются крайние подтипы элементарных слоистых текстур: если R кр = , то имеет место подтип ламинарных слоистых текстур. Если R кр << - то подтип турбулентных (вихревых) слоистых текстур.
А. Подтип ламинарных слоистых текстур . Элементы внутреннего строения располагаются субпараллельно границам слоёв, напоминая ламинарное течение жидкости. Выделяются классы ламинарных слоистых текстур.

элементов текстур обоих слоёв существенно различны.
Возможны разновидности текстур:
Абба. Слой А обладает простой ламинарной слоистой текстурой, слой Б – косой слоистой текстурой.
Аббб. Оба слоя обладают косой слоистой текстурой, но элементы текстуры слоя А располагается косо к элементам текстуры слоя Б .
Б. Подтип турбулентных (вихревых) слоистых текстур . Такие текстуры обычно называются (собственно) косой слоистостью. Одним из свойств (кроме R кр ) элементов текстур этого подтипа является ограниченность длин слойков в сечении образца. По характеру поведения R кр можно выделить текстуры:

  • Ба. R кр = const. Слой образует эллипсовидное кольцо постоянной формы. Так как мы имеем дело со слоистыми явлениями, то образуется сферическое образование (эллипс, шар и пр.), заполненное слоистым веществом. Сама сфера может быть срезана другими сферическими образованиями. Строго анализа этого вида текстур не существует.
  • Бб. R кр const . Радиус кривизны изменяется не только по длине элемента текстуры, но и от слойка к слойку.

История формирования механогенных пород

Согласно представлениями Н. М. Страхова, являющихся в настоящее время руководящими, процесс формирования механогенной осадочной горной породы называется литогенезом (Страхов, 1960) и состоит из стадий :

  1. образование осадочного материала;
  2. перенос осадочного материала;
  3. седиментогенез - накопление осадка;
  4. диагенез - преобразование осадка в осадочную горную породу;
  5. катагенез - стадия существования осадочной горной породы в зоне стратисферы;
  6. метагенез - стадия глубокого преобразования осадочной горной породы в глубинных зонах земной коры .
Образование осадочного материала

Образование осадочного материала происходит за счет действия различных факторов - влияния колебаний температуры , воздействия атмосферы , воды и организмов на горные породы и т. д. Все эти процессы приводят к изменению и разрушению пород и объединяются одним термином выветривание .

Перенос осадочного материала

Осадочный обломочный материал обычно не остается на месте, а переносится под действием различных факторов в те участки земной поверхности, где существуют условия, благоприятные для его на­копления и захоронения.

Чаще всего аргументом является величина , говоря о том, что зерно ориентировано поперёк течения воды в потоке ; это допустимо при перемещении зёрна перекатыванием.

Это зависимость легко вписывается в импульсный (пульсационный) механизм движения взвеси. Пульсационный механизм перемещения материала позволяет говорить о периодичности протекания процесса.

Перемещение зерна подчиняется аксиомам:
1. Перемещение осадочного материала осуществляется как в декартовых координатах , так и во времени , то есть , где - масса переносимого материала; - координата, вдоль которой происходит перемещение материала.
2. Осадочный материал поступает в бассейн осаждения вследствие разрушения некоторого исходного материнского геологического тела , заполненного рыхлым материалом, так, что количество выносимого материала пропорционально количеству материала в исходном геологическом теле. Это, в конечном счёте, приводит к уравнению перемещения вещества :

при преобразовании которого получено простейшее гиперболическое уравнение , или уравнение струны .

Накопление осадка

Транспортируемый осадочный материал осаждается в пониженных участках рельефа . Скорость накопле­ния осадка колеблется в очень широких пределах - от долей мил­лиметра (глубоководные части морей и океанов) до нескольких метров в год (в устьях круп­ных горных рек).

Длительное и устойчивое погружение области осадконакопления предопределяет образование мощной, однородной осадочной толщи. В случае частой смены тектонического режима, а также при сезонных изменениях климата происходит переслаивание осадков, различных по составу и строению.

Следует иметь в виду, что наряду с дифференциацией на поверхности нашей планеты может происходить и смешивание осадочного материала (интеграция), поступающего из разных сноса. Этот процесс приводит к образованию полиминеральных пород, например, граувакк, слагающихся как разнородными обломочными и минеральными компо­нентами, так и биогенным и хемогенным материалом.

Это перемещение называется транспортировкой. Транспортировка , как правило, завершается осаждением материала. Эта стадия - стадия преноса и осаждения вещества называется седиментогенезом (сложное явление, включающее механическое, химическое выветривание, дифференциацию продуктов выветривания , образование и разрушение коллоидных и ионных систем).

Биогенные породы

Основная статья : Биогенные породы

Хемогенные породы

Основная статья : Хемогенные породы

Диагенез

Осадок, накопившийся на дне водоема или на поверхности суши, обычно представляет собой неравновесную систему, состоящую из твердой, жидкой и газовой фаз. Между составными частями осадка начинается физико-химическое взаимодействие. Активное участие в преобразовании осадков принимают обитающие в иле организмы.

Во время диагенеза происходит уплотнение осадка под тяжестью образующихся выше него слоев, обезвоживание, перекри­сталлизация. Взаимодействие составных частей осадка между со­бой и окружающей средой приводит к растворению и удалению неустойчивых компонентов осадка и формированию устойчивых минеральных новообразований. Разложение отмерших животных организмов и растений вызывает изменение окислительно-восста­новительных и щелочно-кислотных свойств осадка. К концу диагенеза